Skip to main content

Estrogen Actions on Endometrial Adenocarcinoma

  • Chapter
Steroid Receptors in Health and Disease

Abstract

Information about the role of hormones in the development of endometrial adenocarcinoma has been collected from a variety of sources. Epidemiologic studies have shown that the risk for endometrial cancer increases under conditions of chronic stimulation with estrogens, unopposed by progesterone (1). These conditions arise in some endocrinopathies resulting in anovulation (2) or during exogenous administration of estrogenic drugs, mostly for climacteric syndrome (3–5). Treatment of endometrial cancer with progestins (6,7) or, more recently, with antiestrogens (8), causes remissions in a significant proportion of patients with metastatic tumors; these results have been interpreted to indicate hormonal responsiveness in at least some endometrial adenocarcinomas. In fact, there is a convincing relation between presence of estrogen or progesterone receptors in metastatic tumors and responsiveness to hormone-related therapy, as shown in Table 1, and unresponsiveness to chemotherapy (13). Similarly, patients with primary endometrial adenocarcinoma tumors containing steroid receptors have a better prognosis for survival (Fig. 1). All of these correlations involving receptor levels suggest that estrogens and progestins affect tumor growth and invasiveness by acting as hormones. However, the effects of progestins used for therapy are obtained at such large drug concentrations that their actions may have to be considered cytotoxic or cytostatic rather than hormonal. Furthermore, the prognostic value of hormone receptor levels may be more a reflection of the relation of these levels to the degree of differentiation of the tumor, as shown in Table 2, than to any hormonal involvement in its development. It may then be reasonable to consider an alternative concept for the interpretation of these findings, namely that the presence of steroid receptors characterizes a physiologic state of the cancer cell and is associated with, rather than responsible for, responses to therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. MacMahon B. Risk factors for endometrial cancer. Gynecol Oncol 1974; 2: 122–9.

    Article  PubMed  CAS  Google Scholar 

  2. Gusberg SB. Hormone-dependence of endometrial cancer. Obstet Gynecol 1967; 30: 287–93.

    PubMed  CAS  Google Scholar 

  3. Ziel HK, Finkle WD. Increased risk of endometrial carcinoma among users of conjugated estrogens. N Engl J Med 1975; 293: 1167–70.

    Article  PubMed  CAS  Google Scholar 

  4. Smith DC, Prentice R, Thompson DJ, Hermann WL. Association of exogenous estrogen and endometrial carcinoma. N Engl J Med 1975; 293: 1164–7.

    Article  PubMed  CAS  Google Scholar 

  5. Mack T, Pike MC, Henderson BE, et al. Estrogens and endometrial cancer in a retirement community. New Engl J Med 1976; 294: 1262–7.

    Article  PubMed  CAS  Google Scholar 

  6. Kelly RM, Baker WH. The role of progesterone in human endometrial cancer. Cancer Res 1965; 25: 1190–2.

    Google Scholar 

  7. Reifenstein EC. The treatment of advanced endometrial cancer with hydroxyprogesterone caproate. Gynecol Oncol 1974; 2: 377–414.

    Article  PubMed  Google Scholar 

  8. Swenerton KD, White GW, Boyes DA. Treatment of advanced endometrial carcinoma with tamoxifen. N Engl J Med 1979; 301–5.

    Google Scholar 

  9. Ehrlich CE, Young PCM, Cleary RE. Cytoplasmic progesterone and estradiol receptors in normal, hyperplastic, and carcinomatous endometria: therapeutic implications. Am J Obstet Gynecol 1981; 141: 539–46.

    PubMed  CAS  Google Scholar 

  10. McCarty KS Jr, Barton TK, Fettler BF, Creasman WT, McCarty KS Sr. Correlation of estrogen and progesterone receptors with histologic differentiation in endometrial adenocarcinoma. Am J Pathol 1979; 96: 171–83.

    PubMed  Google Scholar 

  11. Martin PM, Rolland PH, Gammere M, Serment H, Toga M. Estradiol and progesterone receptors in normal and neoplastic endometrium: correlations between receptors, histopathological examination and clinical responses under progestin therapy. Cancer 1979; 23: 321–9.

    CAS  Google Scholar 

  12. Benraad T, Friberg LG, Koenders AJM, Kullander S. Do estrogen and progesterone receptors (E2R and PR) in metastasizing endometrial cancers predict the response to gestagen therapy? Acta Obstet Gynecol Scand 1980; 59: 155–9.

    Article  PubMed  CAS  Google Scholar 

  13. Kauppila A, Janne O, Kujansuu E, Vihko R. Treatment of advanced endometrial adenocarcinoma with a combined cytotoxic therapy. Cancer 1979; 46: 2162–7.

    Article  Google Scholar 

  14. Martin JD, Hahnel R, McCartney AJ, Woodings TL. The effect of estrogen receptor status on survival in patients with endometrial cancer. Am J Obstet Gynecol 1983; 147: 322–4.

    PubMed  CAS  Google Scholar 

  15. Kauppila A, Kujansuv E, Vihko R. The cytosol estrogen and progestin receptors in endometrial carcinoma of paients treated with surgery, radiotherapy, and progestin. Clinical correlates. Cancer 1982; 50: 2157–62.

    Article  PubMed  CAS  Google Scholar 

  16. Gurpide E, Fleming H, Holinka CF. Steroid receptors and responsiveness to hormones in endometrial cancer. In: Hollander V, ed. Hormonally responsive tumors. New York: Academic Press, 1985: 341–65.

    Google Scholar 

  17. MacMahon B, Cole P, Brown J. Etiology of human breast cancer-a review. J Natl Cancer Inst 1973; 50: 21–42.

    PubMed  CAS  Google Scholar 

  18. Dickson RB, Lippman M. Estrogenic regulation of growth and polypeptide growth factor secretion in human breast carcinoma. Endocr Rev 1987; 8: 29–43.

    Article  PubMed  CAS  Google Scholar 

  19. Zaino RJ, Satyaswaroop PG, Mortel R. Hormonal therapy of human endometrial adenocarcinoma in a nude mouse model. Cancer Res 1985; 45: 539–41.

    PubMed  CAS  Google Scholar 

  20. Lippman ME, Bolan G, Huff K. The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long term culture. Cancer Res 1976; 36: 4595–601.

    PubMed  CAS  Google Scholar 

  21. Butler WB, Kirkland WL, Gargala TL, Goran N, Kelsey WH, Berlinski PJ. Steroid stimulation of plasminogen activator production in a human breast cancer cell line (MCF7). Cancer Res 1983; 43: 1637–41.

    PubMed  CAS  Google Scholar 

  22. Soto AM, Sonnenschein C. Cell proliferation of estrogen-sensitive cells: the case for negative control. Endocr Rev 1987; 8: 44–51.

    Article  PubMed  CAS  Google Scholar 

  23. Nishida M, Kasahare K, Kaneko M, Iwasaki H. Establishment of a new human endometrial adenocarcinoma cell line, Ishikawa cells, containing estrogen and progesterone receptors. Acta Obstet Gynaec Japonica 1985; 37: 1103–11.

    CAS  Google Scholar 

  24. Gravanis A, Gurpide E. Effects of estradiol on DNA polymerase a activity in the Ishikawa human endometrial adenocarcinoma cell line. J Clin Endocr Metab 1986; 63: 356–9.

    Article  PubMed  CAS  Google Scholar 

  25. Holinka CF, Hata H, Kuramoto H, Gurpide E. Effects of steroid hormones and antisteroids on alkaline phosphatase activity in human endometrial cancer cells (Ishikawa line). Cancer Res 1986; 46: 2771–4.

    PubMed  CAS  Google Scholar 

  26. Holinka CF, Hata H, Kuramoto H, Gurpide E. Responses to estradiol in a human endometrial adenocarcinoma cell line (Ishikawa). J Steroid Biochem 1986; 24: 85–9.

    Article  PubMed  CAS  Google Scholar 

  27. Holinka CF, Hata H, Gravanis A, Kuramoto H, Gurpide E. Effects of estradiol on proliferation of endometrial adenocarcinoma cells (Ishikawa line). J Steroid Biochem 1986; 25: 781–6.

    Article  PubMed  CAS  Google Scholar 

  28. Markiewicz L, Schatz F, Barg P, Gurpide E. Prostaglandin F2 output by human endometrium under superfusion and organ culture conditions. J Steroid Biochem 1985; 22: 231–5.

    Article  PubMed  CAS  Google Scholar 

  29. Schatz F, Markiewicz L, Barg P, Gurpide E. In vitro effects of ovarian steroids on PGF output by human endometrium and endometrial epithelial cells. J Clin Endocrinol Metab 1985; 61: 361–7.

    Article  PubMed  CAS  Google Scholar 

  30. Gurpide E, Markiewicz L, Schatz F, Hirata F. Lipocortin output by human endometrium in vitro. J Clin Endocrinol Metab 1986; 63: 162–6.

    Article  PubMed  CAS  Google Scholar 

  31. Schatz F, Markiewicz L, Barg P, Gurpide E. In vitro inhibition with antiestrogens or estradiol effects on PGF production by human endometrium and endometrial epithelial cells Endocrinology 1986; 118: 408–12.

    PubMed  CAS  Google Scholar 

  32. Markiewicz L, Gravanis A, Schatz F, Holinka CF, Deligdisch L, Gurpide E. Prostaglandin production by human endometrial adenocarcinoma in vitro. In: Baulieu EE, Iacobelli S, McGuire WL, eds. Endocrinology and malignancy. London: Partheon Press, 1986: 420–7.

    Google Scholar 

  33. Brodie AMH, Wing L-Y, Goss P, Dowsett M, Coombes RC. Aromatase inhibitors and the treatment of breast cancer. J Steroid Biochem 1986; 24: 91–7.

    Article  PubMed  CAS  Google Scholar 

  34. Markiewicz L, Gurpide E. C19 adrenal steroids enhance PGF2 output by human endometrium in vitro. Am J Obstet Gynecol (submitted).

    Google Scholar 

  35. Hirata F, Schiffman E, Venkatasubramanian K, Salomon D, Axelrod J. A phospholipase A2 inhibitory protein in rabbit neutrophils induced by glucocorticoids. Proc Natl Acad Sci USA 1980; 77: 2533–6.

    Article  PubMed  CAS  Google Scholar 

  36. Davidson FF, Edward A, Dennis MP, Glenney JR Jr. Inhibition of phospholipase A2 by “lipocortins” and calpactins. J Biol Chem 1987; 262: 1698–1705.

    PubMed  CAS  Google Scholar 

  37. Hirata F. Lipomodulin: a possible mediator of the action of glucocorticoids. In: Samuelsson B, Paoleti R, Ranwell P, eds. Prostaglandin, thromboxane and leukotriene research. New York: Raven Press, 1983:11:73–8.

    Google Scholar 

  38. Gurpide E. Enzymatic modulation of hormonal action at the target tissue. J Toxicol Environ Health 1978; 4: 249–68.

    Article  PubMed  CAS  Google Scholar 

  39. Gurpide E. Metabolic influences on the actions of estrogens. Therapeutic implications. Pediatrics 1978; 62: 1114–20.

    PubMed  CAS  Google Scholar 

  40. Gurpide E, Tseng L. Factors controlling intracellular levels of estrogens in human endometrium. Gynecol Oncol 1974; 2: 221–7.

    Article  PubMed  CAS  Google Scholar 

  41. Tseng L, Stolee A, Gurpide E. Quantitative studies on the uptake of metabolism of estrogens and progesterone by human endometrium. Endocrinology 1972; 90: 390–404.

    Article  PubMed  CAS  Google Scholar 

  42. Tseng L. Estrogen synthesis in human endometrial epithelial glands and stromal cells. J Steroid Biochem 1984; 20: 877–81.

    Article  PubMed  CAS  Google Scholar 

  43. Buirchell BJ, Hahnel R. Metabolism of estradiol-176 in human endometrium during the menstrual cycle. J Steroid Biochem 1975; 6: 1489–94.

    Article  PubMed  CAS  Google Scholar 

  44. Pack BA, Tovar R, Booth E, Brooks SC. The cyclic relationship of estrogen sulfurylation to the nuclear receptor level in human endometrial curettings. J Clin Endocrinol Metab 1979; 48: 420–4.

    Article  PubMed  CAS  Google Scholar 

  45. Tseng L, Liu HC. Stimulation of estrogen sulfurylation and arylsulfotransf erase activity in human endometrium by progestin in vitro. J Clin Endocrinol Metab 1981; 418–21.

    Google Scholar 

  46. Tseng L, Gurpide L. Effect of estrone and progesterone on the nuclear uptake of estradiol by slices of human endometrium. Endocrinology 1973; 93: 245–8.

    Article  PubMed  CAS  Google Scholar 

  47. Hata H, Holinka CF, Pahuja SL, Hochberg RB, Kuramoto H, Gurpide E. Estradiol metabolism in Ishikawa endometrial cancer cells. J Steroid Biochem 1987; 26: 699–704.

    Article  PubMed  CAS  Google Scholar 

  48. Tseng L, Mazella J. Kinetic studies of human endometrial hydroxysteroid dehydrogenase. J Steroid Biochem 1981; 14: 437–42.

    Article  PubMed  CAS  Google Scholar 

  49. Larner JM, MacLuskey NJ, Hochberg RB. The naturally occurring C-17 fatty acid esters of estradiol are long-acting estrogens. J Steroid Biochem 1985; 407–13.

    Google Scholar 

  50. Adams JB, Hall RT, Nott S. Esterification-deesterification of estradiol by human mammary cancer cells in culture. J Steroid Biochem 1986; 24: 1159–62.

    Article  PubMed  CAS  Google Scholar 

  51. Szego CM. Mechanisms of hormone action: parallels in receptor-mediated signal propagation for steroid peptide effectors. Life Sci 1984; 35: 2381–96.

    Article  Google Scholar 

  52. Bression D, Michard M, Le Dafniet M, Pagesy P, Peillon F. Evidence for a specific estradiol binding site on rat pituitary membranes. Endocrinology 1986; 119: 1048–51.

    Article  PubMed  CAS  Google Scholar 

  53. Nabekura J, Oomura Y, Minami T, Mizuno Y, Fukuda A. Mechanism of the rapid effect of 17ß-estradiol on medial amygdala neurons. Science 1986; 233: 226–8.

    Article  PubMed  CAS  Google Scholar 

  54. Pietras RJ, Szego CM. Endometrial cell calcium and oestradiol action. Nature 1975; 253: 357–9.

    Article  PubMed  CAS  Google Scholar 

  55. Means AR, Hamilton TH. Early estrogen action: concomitant stimulations within two minutes of nuclear synthesis and uptake of RNA precursor by the uterus. Proc Natl Acad Sci 1966; 56: 1594–8.

    Article  PubMed  CAS  Google Scholar 

  56. Bergamini CM, Pansini F, Bettochi S Jr, et al. Hormonal sensitivity of adenylate cyclase from human endometrium: modulation by estradiol. J Steroid Biochem 1985; 22: 299–303.

    Article  PubMed  CAS  Google Scholar 

  57. Bression D, Brandi AM, Pagesy P, et al. In vitro and in vivo antagonistic regulation of the rat pituitary domperidone binding sites: correlation with ovarian steroid regulation of the dopaminergic inhibition of prolactin secretion in vitro. Endocrinology 1985; 116: 1905–11.

    Article  PubMed  CAS  Google Scholar 

  58. McCarty KS Jr, Wortman J, Stowers S, Lubahn DB, McCarty KS Sr, Siegler HF. Sex steroid receptor analysis in human melanoma. Cancer 1980; 46: 1463–70.

    Article  PubMed  Google Scholar 

  59. Lenger K. Allosteric effects of cortisol, estradiol, progesterone and of the DNA-sequences poly d(A-T) and poly d(C-G) on the adenosine and thymidine phosphorylation of the nuclear nucleoside-nucleotide phosphotransferase C. Int J Biochem 1983; 15: 1241–8.

    Article  PubMed  CAS  Google Scholar 

  60. Liang T, Liao S. Association of the uterine 178-estradiol-receptor complex with ribonucleoprotein in vitro and in vivo. J Biol Chem 1974; 15: 4671–8.

    Google Scholar 

  61. Spelsberg TC, Ruh T, Goldberger A, Horton M, Hora J, Singh R. Nuclear acceptor sites for steroid hormone receptors: comparisons of steroid and antisteroids. In: Pasqualini J, Raynaud JP, eds. Antiestrogens. Oxford: Pergamon Press (in Apress).

    Google Scholar 

  62. Clark JH, Peck EJ Jr. Female sex steroids. Receptors and functions. In: Monographs on endocrinology; vol 14. Berlin-Heidelberg-New York: Springer-Verlag, 1979.

    Google Scholar 

  63. Smith RG, Clarke SG, Zalta E, Taylor RN. Two estrogens in reproductive tissue. J Steroid Biochem 1979; 10: 31–5.

    Article  PubMed  CAS  Google Scholar 

  64. Mechanick JI, Peskin CS. Resolution of steroid binding heterogeneity by Fourier-derived affinity spectrum analysis (FASA). Anal Biochem 1986; 157: 221–35.

    Article  PubMed  CAS  Google Scholar 

  65. Moncharmont B, Su J-L, Parikh I. Monoclonal antibodies against estrogen receptor interaction with different forms and functions of the receptor. Biochem 1982; 21: 6916–21.

    Article  CAS  Google Scholar 

  66. Gurpide E. In vitro effects of steroids on human endometrium. In: Genazzani AR, Volpe A, Faccinetti F, eds. Gynecological endocrinology. Lanes UK: The Parthenon Group, 1987: 569–75.

    Google Scholar 

  67. Abel MH, Baird DT. The effect of 178-estradiol and progesterone on prostaglandin production by human endometrium maintained in organ culture. Endocrinology 1980; 106: 1599–606.

    Article  PubMed  CAS  Google Scholar 

  68. Holinka CF, Deligdisch L, Gurpide E. Histological evaluation of in vitro responses of endometrial adenocarcinoma to progestins and their relation to progesterone levels. Cancer Res 1984; 44: 293–6.

    PubMed  CAS  Google Scholar 

  69. Tseng L, Gurpide E. Induction of human endometrial estradiol dehydrogenase by progestins. Endocrinology 1975; 825–33.

    Google Scholar 

  70. Whitehead MI, Townsend PT, Pryse-Davis J, Ryder TA, King RJB. Effects of estrogens and progestins on the biochemistry and morphology of the postmenopausal endometrium. N Engl Med 1981; 305: 1599–1605.

    Article  CAS  Google Scholar 

  71. Pollow K, Boquoi E, Lubbert H, Pollow B. Effect of gestagen therapy upon 178-hydroxysteroid dehydrogenase in human endometrium and endometrial carcinoma. J Endocrinol 1975; 67: 131–2.

    Article  PubMed  CAS  Google Scholar 

  72. Bayard F, Damilano S, Robel P, Baulieu EE. Cytoplasmic and nuclear estradiol and progesterone receptors in human endometrium. J Clin Endocrinol Metab 1981; 46: 635–48.

    Article  Google Scholar 

  73. Pollow K, Schmidt-Gollwitzer M, Pollow B. Progesterone-and estradiol-binding proteins from normal human endometrium and endometrial carcinoma: a comparative study. In: Wittliff JL, Dapunt O, eds. Steroid receptors and hormone-dependent neoplasia. New York: Masson, 1980: 69–94.

    Google Scholar 

  74. Kuramoto H, Tamura S, Notake Y. Establishment of a cell line of human endometrial adenocarcinoma in vitro. Am J Obstet Gynecol 1972; 114: 1012–9.

    PubMed  CAS  Google Scholar 

  75. Fleming H, Blumenthal R, Gurpide E. Effect of cyclic nucleotides on estradiol binding in human endometrium. Endocrinology 1982; 111: 1671–7.

    Article  PubMed  CAS  Google Scholar 

  76. Fleming H, Blumenthal R, Gurpide E. Rapid changes in specific estrogen binding elicited by guanosine-3’,5’-cyclic monophosphate of cAMP in cytosol from human endometrial cells. Proc Natl Acad Sci USA 1983; 80: 2486–90.

    Article  PubMed  CAS  Google Scholar 

  77. Gurpide E, Blumenthal R, Fleming H. Regulation of estrogen receptor levels in endometrial cancer cells. In: Gurpide E, Calandra R, Levy C, Soto RJ, eds. Hormones and cancer. New York: Alan R Liss, 1984: 145–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Gurpide, E. et al. (1988). Estrogen Actions on Endometrial Adenocarcinoma. In: Moudgil, V.K. (eds) Steroid Receptors in Health and Disease. Serono Symposia, USA. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5541-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5541-0_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5543-4

  • Online ISBN: 978-1-4684-5541-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics