Skip to main content

Bacteria and Chromium in Marine Sediments

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 10))

Abstract

Chromium (Cr), atomic number 24 and mass 52.01, is one of the most widely used metals in industry (Stern, 1982; Kimbell and Panulas, 1984; Moore and Ramamoorthy, 1984) and its use is increasing (Papp, 1983). Since many Cr-containing effluents are discharged into bodies of water (Moore and Ramamoorthy, 1984), the possibility that the discharged Cr interacts with the biota immediately or subsequently has to be considered. From the literature there is little evidence that consideration has been given to this possibility (Moore and Ramamoorthy, 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahsanullah, M., 1982, Acute toxicity of chromium, mercury, molybdenum and nickel to the amphipod Allorchestes compressa, Aust. J. Mar. Freshwater Res. 33:465–474.

    CAS  Google Scholar 

  • Aislabie, J., 1984, Aerobic heterotrophic bacteria in a marine sediment polluted with chromium, Ph.D. Thesis, University of Otago, Dunedin, New Zealand.

    Google Scholar 

  • Aislabie, J., and Loutit, M. W., 1984, The effect of effluent high in chromium on marine sediment aerobic heterotrophic bacteria, Mar. Environ. Res. 13:69–79.

    CAS  Google Scholar 

  • Aislabie, J., and Loutit, M. W., 1986, Accumulation of Cr(III) by bacteria isolated from polluted sediment.Mar. Environ. Res. 20:221–232.

    CAS  Google Scholar 

  • Ajmal, M., Nomani, A. A., and Ahmad, A., 1984, Acute toxicity of chrome electroplating wastes to microorganisms: Adsorption of Chromate and chromium (VI) on a mixture of clay and sand.Water Air Soil Pollut. 23:119–127.

    CAS  Google Scholar 

  • Albright, L. J., and Wilson, E. M., 1974, Sub-lethal effects of several metallic salts-organic compound combinations upon the heterotrophic microflora of a natural water. Water Res. 8:101–105.

    CAS  Google Scholar 

  • Albright, L. J., Wentworth, J. S., and Wilson, E. M., 1972, Technique for measuring metallic salt effects upon the indigenous heterotrophic microflora of a natural water. Water Res. 6:1589–1596.

    CAS  Google Scholar 

  • Aston, S. R., and Chester, R., 1976, Estuarine sedimentary processes, in: Estuarine Chemistry (J. D. Burton and P. S. Liss, ed.), pp. 37–53, Academic Press, London.

    Google Scholar 

  • Austin, B., Allen, D. A., Mills, A. L., and Colwell, R. R., 1977, Numerical taxonomy of heavy metal-tolerant bacteria isolated from an estuary, Can. J. Microbiol. 23:1433–1447.

    PubMed  CAS  Google Scholar 

  • Babich, H., and Stotzky, G., 1980, Environmental factors that influence the toxicity of heavy metal and gaseous pollutants to microorganisms,CRC Crit. Rev. Microbiol. 8:99–145.

    CAS  Google Scholar 

  • Babich, H., and Stotzky, G., 1981, Manganese toxicity to fungi: Influence of pH, Bull. Environ. Contam. Toxicol. 27:474–480.

    PubMed  CAS  Google Scholar 

  • Babich, H., and Stotzky, G., 1982, Nickel toxicity to fungi: Influence of environmental factors, Ecotoxicol. Environ. Safety 6:577–589.

    PubMed  CAS  Google Scholar 

  • Babich, H., and Stotzky, G., 1983, Nickel toxicity to estuarine/marine fungi and its amelioration by magnesium in sea water. Water Air Soil Pollut. 19:193–202.

    CAS  Google Scholar 

  • Babich, H., Schiffenbauer, M., and Stotzky, G., 1982, Comparative toxicity of trivalent and hexavalent chromium to fungi. Bull. Environ. Contam. Toxicol. 28:452–459.

    PubMed  CAS  Google Scholar 

  • Baldry, M. G. C., Hogarth, D. S., and Dean A. C. R., 1977, Chromium and copper sensitivity and tolerance in Klebsiella aerogenes, Microbios Lett., 4:7–16.

    CAS  Google Scholar 

  • Boeye, A., Wayenbergh, M., and Aerts, M., 1975, Density and composition of heterotrophic bacterial populations in north sea sediment, Mar. Biol. 32:263–270.

    Google Scholar 

  • Bopp, L. H., Chakrabarty, A. M., and Ehrlich, H. L., 1983, Chromate resistance plasmid in Pseudomonas jluorescens, J. Bacteriol. 155:1105–1109.

    CAS  Google Scholar 

  • Bremer, P. J., and Loutit, M. W., 1986a, Bacterial polysaccharide as a vehicle for the entry of Cr(III) to a food chain. Mar. Environ. Res. 20:235–248.

    CAS  Google Scholar 

  • Bremer, P. J., and Loutit, M. W., 1986b, The effect of Cr(III) on the form and degradability of a polysaccharide produced by a bacterium isolated from a marine sediment, Mar. Environ. Res. 20:249–260.

    CAS  Google Scholar 

  • Brkovic-Popovic, L, and Popovic, M., 1977, Effects of heavy metals on survival and respiration rate of tubificid worms: Part II—Effects on respiration rate. Environ. Pollut. 13:93–98.

    CAS  Google Scholar 

  • Buat-Menard, P. E., 1984, Fluxes of metals through the atmosphere and oceans, in: Changing Metal Cycles and Human Health (J. O. Nriagu, ed.), pp. 43–69, Springer-Verlag, New York.

    Google Scholar 

  • Calabrese, A., Collier, R. W., Nelson, D. A., and Maclnnes, J. R., 1973, The toxicity of heavy metals to embryos of the American oyster Crassostrea virginica, Mar. Biol. 18:162–166.

    CAS  Google Scholar 

  • Capone, D. G., Reese, D. D., and Kiene, R. P., 1983, Effects of metals on methanogenesis, sulfate reduction, carbon dioxide evolution, and microbial biomass in anoxic salt marsh sediments, Appl. Environ. Microbiol. 45:1586–1591.

    PubMed  CAS  Google Scholar 

  • Capuzzo, J. D., and Anderson, F. E., 1973, The use of modem chromium accumulations to determine estuarine sedimentation rates. Mar. Geol. 14:225–235.

    CAS  Google Scholar 

  • Gary, E. E., 1982, Chromium in air, soil and natural waters, in Biological and Environmental Aspects of Chromium (S. Langard, ed.), pp. 49–64. Elsevier Biomedical Press, New York.

    Google Scholar 

  • Costerton, J. W., Irwin, R. T., and Cheng, K. Y., 1981, The bacterial glycocalyx in nature and disease, Annu. Rev. Microbiol 35:299–324.

    PubMed  CAS  Google Scholar 

  • Cranston, R. E., and Murray, J. W., 1978, The determination of chromium species in natural waters. Anal. Chim. Acta. 99:275–282.

    CAS  Google Scholar 

  • Cranston, R. E., and Murray, J. W., 1980, Chromium species in the Columbia River and Estuary, Limnol. Oceanogr. 25:1104–1112.

    CAS  Google Scholar 

  • Curl, H., Cutshall, N., and Osterberg, C., 1965, Uptake of chromium (III) by particles in sea-water. Nature 205:275–276.

    CAS  Google Scholar 

  • Cutshall, N., Johnson, V., and Osterberg, C, 1966, Chromium-51 in sea water: Chemistry, Science 152:202–203.

    PubMed  CAS  Google Scholar 

  • Den Dooren De Jong, L. E., 1971, Tolerance ofAzotobacter for metallic and non-metallic ions, Antonie Leeuwenhoek 37:119–124.

    Google Scholar 

  • Dickert, G., Konheiser, U., Piechulla, K., and Thauer, R. K., 1981, Nickel requirement and factor F430 content of methanogenic bacteria, J. Bacteriol. 148:459–464.

    Google Scholar 

  • Douglas, G. S., Mills, G. L., and Quinn, J. G., 1986, Organic copper and chromium complexes in the interstitial waters of Narragansett Bay (Rhode Island, USA) sediments. Mar. Chem. 19:161–174.

    CAS  Google Scholar 

  • Dubinina, G. A., 1976, Ecology of freshwater iron bacteria, Biol. Bull. Acad. Sci. USSR 3:473–488.

    Google Scholar 

  • Duedall, I. W., Ketchum, B. H., Park, P. K., and Kester, D. R., 1983, in: Global Inputs, Characteristics, and Fates of Ocean-Dumped Industrial and Sewage Wastes: An Overview (I. W. Duedall, P. K. Park, B. H. Ketchum, and D. R. Kester, eds.), pp. 3–46, Wiley, New York.

    Google Scholar 

  • Duxbury, T., 1981, Toxicity of heavy metals to soil bacteria, FEMS Microbiol. Lett. 11:217–220.

    CAS  Google Scholar 

  • Duxbury, T., 1986, Microbes and heavy metals: An ecological review, Microb. Sci., 3:330–333.

    CAS  Google Scholar 

  • Eisler, R., and Hennekey, R. J., 1977, Acute toxicities of Cd2+, Cr6+, Hg2+, Ni2+ and Zn2+ to estuarine microfauna. Arch. Environ. Contam. Toxicol. 6:315–323.

    PubMed  CAS  Google Scholar 

  • Elderfield, H., 1970, Chromium speciation in seawater. Earth Planet. Sci. Lett. 9:10–16.

    CAS  Google Scholar 

  • Fargo, L. L., and Fleming, R. W., 1977, Effects of Chromate and cadmium on most probable number estimates of nitrifying bacteria in activated sludge. Bull. Environ. Contam. Toxicol. 18:350–354.

    PubMed  CAS  Google Scholar 

  • Forstner, U., 1984, Metal pollution of terrestrial waters, in:Changing Metal Cycles and Human Health (J. O. Nriagu, ed.), pp. 71–94, Springer-Vertag, New York.

    Google Scholar 

  • Forstner, U., and Wittmann, G. T. W., 1981, Metal Pollution in the Aquatic Environment, Springer-Verlag, New York.

    Google Scholar 

  • Foster, T. J., 1983, Plasmid determined resistance to antimicrobial drugs and toxic metal ions in bacteria,Microbiol. Rev. 47:361–409.

    PubMed  CAS  Google Scholar 

  • Frey, B. E., Riedel, G. F., Bass, A. E., and Small, L. F., 1983, Sensitivity of estuarine phy-toplankton to hexavalent chromium, Est. Coast. Shelf Sci. 17:181–187.

    CAS  Google Scholar 

  • Fukai, R., 1967, Valency state of chromium in sea water, Nature 213:901–902.

    CAS  Google Scholar 

  • Gadd, G. M., 1981, Mechanisms implicated in the ecological success of polymorphic fungi in metal polluted habitats. Sci. Technol. Lett. 2:531–536.

    CAS  Google Scholar 

  • Gadd, G. M., and Griffiths, A. J., 1978, Microorganisms and heavy metal toxicity,Microb. Ecol. 4:303–317.

    CAS  Google Scholar 

  • Geesey, G. C., 1982, Microbial exopolymer: Ecological and economic considerations,ASM News 48:9–14.

    Google Scholar 

  • Goulder, R., Blanchard, A. S., Sanderson, P. L., and Wright, B., 1980, Relationships between heterotrophic bacteria and pollution in an industrialized estuary, Water Res. 14:591–601.

    Google Scholar 

  • Goyne, E. R., and Jones, G. E., 1973, An ecological survey of the open ocean and estuarine microbial populations II. The oligodynamic effect of Ni on marine bacteria, in: Marine Ecology (B. L. Stevenson, ed.), pp. 243–257, University of South Carolina Press.

    Google Scholar 

  • Gupta, S. K., and Chen, K. Y., 1975, Partitioning of trace metals in selective chemical fractions on nearshore sediments.Environ. Lett. 10:129–158.

    Google Scholar 

  • Haefeli, C., Franklin, C., and Hardy, K., 1984, Plasmid determined silver resistance in Pseudomonas stutzeri isolated from a silver mine, J. Bacteriol. 158:389–392.

    PubMed  CAS  Google Scholar 

  • Hauxhurst, J. D., Krichevsky, M. I., and Atlas, R. M. 1980, Numerical taxonomy of bacteria from the Gulf of Alaska, J. Gen. Microbiol. 120:131–148.

    Google Scholar 

  • Hauxhurst, J. D., Kaneko, T., and Atlas, R. M. 1981, Characteristics of bacterial communities in the Gulf of Alaska, Microb. Ecol. 7:167–182.

    Google Scholar 

  • Hershelman, G. P., Schäfer, H. A., Jan, T. K., and Young, D. R., 1981, Metals in marine sediments near a large California Municipal outfall. Mar. Pollut. Bull. 12:131–134.

    CAS  Google Scholar 

  • Hodgkiss, W., and Shewan, J. M., 1968, Problems and modern principles in taxonomy of marine bacteria, in: Advances in Microbiology of the Sea, Vol. I (M. R. Droop and E. J. Fergusson Wood, eds.), pp. 127–166, Academic Press, London.

    Google Scholar 

  • Horitsu, H., Nishida, H., Kato, H., and Tomoyeda, M., 1978, Isolation of potassium Chromate tolerant bacterium and Chromate uptake by the bacterium, Agric. Biol. Chem. 42:2037–2043.

    CAS  Google Scholar 

  • Horitsu, H., Futo, S., Ozawa, K., and Kawai, K., 1983, Comparison of characteristics of hexavalent chromium-tolerant bacterium, Pseudomonas ambigua G-1, and its hexav-alent chromium-sensitive mutant, Agric. Biol. Chem. 47:2907–2908.

    Google Scholar 

  • James, B. R., and Bartlett, R. J., 1984, Nitrification in soil suspensions treated with chromium (III, VI) salts or tannery wastes. Soil Biol. Biochem. 16:293–295.

    CAS  Google Scholar 

  • Jan, T.-K., and Young, D. R., 1978, Chromium speciation in municipal wastewater and seawater, J. Water Pollut. Control. Fed. 50:2327–2336.

    CAS  Google Scholar 

  • Jeandel, C., and Minster, J. F., 1984, Isotope dilution measurements of inorganic chromium (III) and total chromium in seawater, Mar. Chem. 14:347–364.

    CAS  Google Scholar 

  • Jenkins, S. H., 1982, Chromium (VI) reduction in sea water, Mar. Pollut. Bull. 13:77–78.

    Google Scholar 

  • Jernelov, A., and Martin, A., 1975, Ecological implications of metal metabolism by microorganisms,Annu. Rev. Microbiol. 29:61–77.

    PubMed  CAS  Google Scholar 

  • Johnson, L, Flower, N., and Loutit, M. W., 1981, Contribution of periphytic bacteria to the concentration of chromium in the crab Helice crassa, Microb. Ecol. 7:245–252.

    CAS  Google Scholar 

  • Katz, A., and Kaplan, I. R., 1981, Heavy metals behavior in coastal sediments of Southern California: A critical review and synthesis. Mar. Chem. 10:261–299.

    CAS  Google Scholar 

  • Kimbell, C. L., and Panulas, J., 1984, Minerals in the world economy, in: Minerals Yearbook, 1982, Vol. III Area Reports: International, pp. 1–35, Bureau of Mines, U. S. Department of the Interior, Washington, D. C.

    Google Scholar 

  • Knezevic, M. Z., and Chen, K. Y., 1977, Organometallic interactions in recent marine sediments, in: Chemistry of Marine Sediments (T. F. Yen, ed.), pp. 231–241, Ann Arbor Scientific, Ann Arbor, Michigan.

    Google Scholar 

  • Kurata, A., Yoshida, Y., Kadota, H., and Taguchi, F., 1977, Distribution of Ni tolerant bacteria in water and sediments of the sea of Aso, Bull. Jpn. Soc. Sci. Fish. 43:1203–1208.

    CAS  Google Scholar 

  • Kuwabara, J. S., 1981, Gametophytic growth byMacrocystis pyrifera (Phaeophyta) in response to various iron and zinc concentrations,J. Phycol. 17:417–419.

    CAS  Google Scholar 

  • Kuwabara, J. S., 1982, Micronutrients and kelp cultures: Evidence for cobalt and manganese deficiency in southern California deep sea water, Science 216:1218–1221.

    Google Scholar 

  • Leland, H. V., Luoma, S. N., Elder, J. F., and Wilkes, D. J., 1978, Heavy metals and related trace elements, J. Water Pollut Control Fed. 50:1469–1514.

    CAS  Google Scholar 

  • Lindau, C. W., and Hossner, L. R., 1982, Sediment fraction of copper, nickel, zinc, chromium, molybdenum and iron in 1 experimental and 3 natural marshes,J. Environ. Qual. 11:540–545.

    CAS  Google Scholar 

  • Loring, D. H., 1979, Geochemistry of cobalt, nickel, chromium, and vanadium in the sediments of the estuary and open Gulf of St. Lawrence, Can. J. Earth Sci. 16:1196–1209.

    CAS  Google Scholar 

  • Loutit, M. W., and Pillidge, C. J., 1987, Sediment bacteria and mobilization of Cr (III), in: Proceedings of the 4th International Congress of Microbial Ecology, Ljubljana, Yugoslavia, August 1986, in press.

    Google Scholar 

  • Lu, J. C. S., and Chen, K. Y., 1977, Migration of trace metals in interfaces of seawater and polluted surficial sediments. Environ. Sci. Technol. 11:174–182.

    CAS  Google Scholar 

  • Luli, G. W., Talnagi, J. W., Strohl, W. R., and Pfister, R. M., 1983, Hexavalent chromium-resistant bacteria isolated from river sediments,Appl. Environ. Microbiol. 46:846–854.

    PubMed  CAS  Google Scholar 

  • Martin, M., Osbom, K. E., Billig, P., and Glickstein, N., 1981, Toxicities often metals to Crassostrea gigas andMytilus edulis embryos and Cancer magister larvae, Mar. Pollut. Bull. 12:305–308.

    CAS  Google Scholar 

  • Mayer, L. M., and Fink, L. K., 1980, Granulometric dependence of chromium accumulation in estuarine sediments. Mar. Est. Coast. Mar. Sci. 11:491–503.

    Google Scholar 

  • McDermott, D. J., Alexander, G. V., Young, D. R., and Meams, A. J., 1976, Metal contamination of flatfish around a large submarine outfall, J. Water Pollut. Control Fed. 48:1913–1917.

    PubMed  CAS  Google Scholar 

  • McFeters, G. A., Bond, P. J., Olson, S. B., and Tchan, Y. T., 1983, A comparison of microbial bioassays for the detection of aquatic toxicants. Water Res. 17:1757–1762.

    CAS  Google Scholar 

  • Mearns, A. J., and Young, D. R., 1977, Chromium in the southern Califomian environment, in: Pollutant Effects on Marine Organisms (C. S. Giam, ed.), pp. 125–142, Lexington Books, D. C. Heath and Company, Lexington.

    Google Scholar 

  • Mertz, W., 1969, Chromium occurrence and function in biological systems, Physiol Rev. 49:163–172.

    PubMed  CAS  Google Scholar 

  • Moore, J. W., and Ramamoorthy, S., 1984, Chromium, in: Heavy Metals in Natural Waters: Applied Monitoring and Impact Assessment (J. W. Moore and S. Ramamoorthy, eds.), pp. 58–73, Springer-Verlag, New York.

    Google Scholar 

  • Mowll, J. L., and Gadd, G. M., 1984, Cadmium uptake byAureobasidium pullulans, J. Gen. Microbiol. 130:279–284.

    CAS  Google Scholar 

  • Nakayama, E., Kuwamoto, T., Tokoro, H., and Fujinaga, T., 1981a, Chemical speciation of chromium in seawater: Part 3. The determination of chromium species. Anal. Chim. Acta 131:247–254.

    CAS  Google Scholar 

  • Nakayama, E., Kuwamoto, T., Tsurubo, A., and Fujinaga, T., 1981b, Chemical speciation of chromium in seawater: Part 2. Effects of manganese oxide and reducible organic materials on the redox processes of chromium. Anal. Chim. Acta 130:401–404.

    CAS  Google Scholar 

  • Nakayama, E., Tokoro, H., Kuwamoto, T., and Fujinaga, T., 1981c, Dissolved state of chromium in seawater. Nature, 290:768–770.

    Google Scholar 

  • NAS, 1974, Medical and Biological Effects of Environmental Pollutants, Chromium, Committee on the Biologic Effects of Atmospheric Pollutants, Medical Sciences National Research Council, Washington, D. C.

    Google Scholar 

  • Nedwell, D. B., and Brown, C. M., 1982, Sediment Microbiology, Society of Microbiology, Academic Press, London.

    Google Scholar 

  • Nelson, D. J., and Colwell, R. R., 1975, The ecology of mercury resistant bacteria in Chesapeake Bay, MicrobEcol. 1:191–218.

    CAS  Google Scholar 

  • Nordgren, A., Baath, E., and Soderstrom, B., 1983, Microfungi and microbial activity along a heavy metal gradient, AppL Environ. Microbiol 45:1829–1837.

    PubMed  CAS  Google Scholar 

  • Osaki, S., Osaki, T., Nishino, K., and Takashima, Y., 1980, Oxidation and reduction of chromium in natural water I. Oxidation rate of chromium (III) by oxygen in the presence of Mn (II), Nippon Kaguku Kaishi 5:711–716.

    Google Scholar 

  • Oshida, P. S., and Word, L. S., 1982, Bioaccumulation of chromium and its effects on reproduction in Neanthes arenaceodentata (Polychaeta), Mar. Environ. Res. 7:167–174.

    CAS  Google Scholar 

  • Osterberg, C., Cutshall, N., and Cronin, J., 1965, Chromium-51 as a radioactive tracer of Columbia River water at sea, Science 150:1585–1587.

    PubMed  CAS  Google Scholar 

  • Pankow, J. F., Leta, D. P., Lin, J. W., Ohl, S. E. Shum, W. P., and Janauer, G. E., 1977, Analysis for chromium traces in the aquatic ecosystem. II. A study of Cr(III) and Cr(VI) in the Susquehanna River basin of New York and Pennsylvania, Sci. Total Environ. 7:17–26.

    CAS  Google Scholar 

  • Papp, J. F., 1983, Chromium, in: Mineral Commodity Profiles, pp. 1–18, United States Department of the Interior, Bureau of Mines, Washington, D. C.

    Google Scholar 

  • Petrilli, F. L., and de Flora, S., 1977, Toxicity and mutagenicity of hexavalent chromium on Salmonella typhimurium, Appl. Environ. Microbiol., 33:805–809.

    PubMed  CAS  Google Scholar 

  • Phillips, D. J. H., 1980, Biological indicators: A retrospective summary, in: Quantitative Aquatic Biological Indicators: Their Use to Monitor Trace Metal and Organochlorine Pollution (D. J. H. Phillips, ed.), pp. 377–411, Applied Science Publishers, London.

    Google Scholar 

  • Pillidge, C. J., 1985, Bacterial mobilization of chromium (III) in a polluted marine sediment, Ph. D. Thesis, University of Otago, Dunedin, New Zealand.

    Google Scholar 

  • Ramamoorthy, S., and Kushner, D. J., 1975, Binding of mercuric and other metal ions by microbial growth media,Microb Ecol. 2:162–176.

    CAS  Google Scholar 

  • Rao, V. M., and Sastri, M. N., 1982, Determination of chromium in natural waters—A review, J. Sci. Ind. Res. 41:607–615.

    CAS  Google Scholar 

  • Rheinheimer, G., 1980, Aquatic Microbiology, 2nd Ed., Wiley, Chichester.

    Google Scholar 

  • Ross, D. S. Sjogren, R. E., and Bartlett, R. J., 1981, Behaviour of chromium in soils: IV. Toxicity to microorganisms, J. Environ. Qual. 10:145–148.

    CAS  Google Scholar 

  • Schnitzer, M., and Kerndorff, H., 1981, Reactions of fulvic acid with metal ions. Water Air SoilPollut. 15:97–108.

    CAS  Google Scholar 

  • Schroeder, D. C., and Lee, G. F., 1975, Potential transformations of chromium in natural waters. Water Air Soil Pollut. 4:355–365.

    CAS  Google Scholar 

  • Schulz-Baldes, M., Rehm, E., and Farke, H., 1983, Field experiments on the fate of lead and chromium in an intertidal benthic mesocosm, the Bremerhaven Caisson, Mar. Biol. 75:307–318.

    CAS  Google Scholar 

  • Sieburth, J. M. N., 1967, Seasonal selection of estuarine bacteria by water temperature, J. Exp. Mar. Biol. Ecol. 1:98–121.

    Google Scholar 

  • Sieburth, J. M. N., 1979, Sea Microbes, Oxford University Press, New York.

    Google Scholar 

  • Simon-Pujol, M. D., Marques, A. M., Ribera, M., and Congregado, F., 1979, Drug resistance of chromium tolerant Gram-negative bacteria isolated from a river, Microbios Lett. 7:139–144.

    Google Scholar 

  • Smillie, R. H., 1980, Metals in wastewater. Ph. D. Thesis, University of Otago, Dunedin, New Zealand.

    Google Scholar 

  • Thompson, G. A., and Watling, R. J., 1984, A simple method for the determination of bacterial resistance to metals. Bull. Environ. Contam. Toxicol. 31:705–711.

    CAS  Google Scholar 

  • Timoney, J. F., Port, J., Giles, J., and Spanier, J., 1978, Heavy-metal and antibiotic resistance in the bacterial flora of sediments of New York Bight, Appl. Environ. Microbiol. 36:465–472.

    PubMed  CAS  Google Scholar 

  • Traxler, R. W., and Wood, E. M., 1981, Multiple metal tolerance of bacterial isolates, Dev. Ind. Microbiol. 22:521–528.

    CAS  Google Scholar 

  • Trevors, J. T., Oddie, K. M., and Belliveau, B. H., 1985, Metal resistance in bacteria, FEMS Microbiol Rev. 32:39–54.

    CAS  Google Scholar 

  • Trevors, J. T. Stratton, G. W., and Gadd, G. M., 1986, Cadmium, transport, resistance and toxicity in bacteria, algae and fungi. Can. J. Microbiol. 32:447–464.

    PubMed  CAS  Google Scholar 

  • Van der Weijden, C. H., and Reith, M., 1982, Chromium (III)-chromium (VI) intercon-versions in seawater. Mar. Chem. 11:565–572.

    Google Scholar 

  • Walker, J. D., and Colwell, R. R., 1975, Factors affecting enumeration and isolation of Acti-nomycetes from Chesapeake Bay and South East Atlantic Ocean sediments. Mar. Biol. 30:193–201.

    Google Scholar 

  • Washington, J. A. L.L., Snyder, R. J., Kohner, P. C., Curtis, G., Wilt, S. E., Ilstrup, D. M., and McCall, J. T., 1978, Effect of cation content of agar on the activity of gentamicin, jobramycin and amikacin against Pseudomonas aeruginosa, J. Infect. Dis. 1 137:103–111.

    Google Scholar 

  • Wood, E. F. G., 1967, Marine Microbial Ecology, Reinhold, New York.

    Google Scholar 

  • Young, L. Y., and Mitchell, R., 1973, Negative Chemotaxis of marine bacteria to toxic chemicals,Appl. Environ. Microbiol. 25:972–976.

    CAS  Google Scholar 

  • Zajic, J. E., 1969, Microbial Biogeochemistry, Academic Press, New York.

    Google Scholar 

  • Zhou, J., Wanying, C., Ming, K., Wang, L., Yuting, W., and Kueichu, L., 1979, Marine geochemistry I. The valence state of chromium in sea water and the sea water-sediment chromium interchange. Paper presented at International Association on Physical Sciences of the Ocean—Symposium on Marine Pollution Transfer Processes, Canberra, Australia.

    Google Scholar 

  • ZoBell, C. E., 1946, Marine Microbiology, A Monograph on Hydrobacteriology, Chronica Botanica, Waltham, Mass.

    Google Scholar 

  • ZoBell, C. E., 1973, Microbial and Environmental Transitions in Estuaries, Belle W. Baruch Coastal Research Institute, University of South Carolina Press, Columbia, South Carolina.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Loutit, M.W., Aislabie, J., Bremer, P., Pillidge, C. (1988). Bacteria and Chromium in Marine Sediments. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5409-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5409-3_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5411-6

  • Online ISBN: 978-1-4684-5409-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics