Skip to main content

Genetic Control of the Connectivity and Excitability of Cerebellar Purkinje Cells in Rodents

  • Chapter
Gene Expression and Cell-Cell Interactions in the Developing Nervous System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 181))

  • 44 Accesses

Abstract

The development of synaptic contacts between nerve cells and of the excitability of neuronal membranes are two important steps in the building of the nervous system. Hughes (1968a,b) was the first to state that during the normal course of development, connections are initially more diffuse than in the adult, i.e. the adult-type neuronal circuits derive not only from an increase in the total number of synaptic contacts, but also from the elimination of irrelevant connections. Indeed, this idea was not really new since at the turn of the century, Cajal (1911) had already described the presence of transient axonal projections in the central nervous system of mammals at early developmental stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brown, M.C., Jansen, J.K.S., and Van Essen, D. (1976). Polyneuronal innervation of skeletal muscle in new-born rats and its elimination during maturation. J. Physiol. (Lond.) 261:387–422.

    CAS  Google Scholar 

  • Campbell, N.C., and Armstrong, D.M. (1983). Topographical localization in the olivocerebellar projection in the rat: an autoradiographic study. Brain Res. 275:235–249.

    Article  PubMed  CAS  Google Scholar 

  • Changeux, J.P., Courrège, P., and Danchin, A. (1973). A theory of epigenesis of neuronal networks by selective stabilization of synapses. Proc. Natl. Acad. Sci. (USA) 70:2974–2978.

    Article  CAS  Google Scholar 

  • Changeux, J.P., and Danchin, A. (1976). Selective stabilization of developing synapses as a mechanism for the specification of neuronal networks. Nature 264:705–712.

    Article  PubMed  CAS  Google Scholar 

  • Courville, J. (1975). Distribution of olivocerebellar fibers demonstrated by radioautographic tracing methods. Brain Res. 95:253–263.

    Article  PubMed  CAS  Google Scholar 

  • Crepel, F. (1974). Excitatory and inhibitory processes acting upon cerebellar Purkinje cells during maturation in the rat; influence of hypothyroidism. Exp. Brain Res. 20:403–420.

    Article  PubMed  CAS  Google Scholar 

  • Crepel, F. (1982). Regression of functional synapses in the immature mammalian cerebellum. Trends in Neurosci. 5:266–269.

    Article  Google Scholar 

  • Crepel, F., Delhaye-Bouchaud, N., and Dupont, J.L. (1981). Fate of the multiple innervation of cerebellar Purkinje cells by climbing fibers in immature control, X-irradiated and hypothyroid rats. Dev. Brain Res. 1:59–71.

    Article  Google Scholar 

  • Crepel, F., Delhaye-Bouchaud, N., Guastavino, J.M., and Sampaio, I. (1980). Multiple innervation of cerebellar Purkinje cells by climbing fibres in staggerer mutant mouse. Nature 183:483–484.

    Article  Google Scholar 

  • Crepel, F., Dupont, J.L., and Gardette, R. (1984). Selectiveabsence of calcium spikes in Purkinje cells of staggerer mutant mice in cerebellar slices maintained in vitro. J. Physiol. (Lond.) 346:in press.

    Google Scholar 

  • Crepel, F., and Mariani, J. (1976). Multiple innervation of Purkinje cells by climbing fibres in the cerebellum of the weaver mutant mouse. J. Neurobiol. 7:579–582.

    Article  PubMed  CAS  Google Scholar 

  • Crepel, F., Mariani, J., and Delhaye-Bouchaud, N. (1976). Evidence for a multiple innervation of Purkinje cells by climbing fibres in the immature rat cerebellum. J. Neurobiol. 7:567–578.

    Article  PubMed  CAS  Google Scholar 

  • Ding, R., Jansen, J.K.S., Laing, L.G., and Tonnesen, H. (1983). The innervation of skeletal muscles in chickens curarized during early development. J. Neurocytol. 12:887–919.

    Article  PubMed  CAS  Google Scholar 

  • Dupont, J.L., Delhaye-Bouchaud, N., and Crepel, F. (1981). Autoradiographic study of the distribution of olivocerebellar connections during the involution of the multiple innervation of Purkinje cells by climbing fibers in the developing rat. Neurosci. Letters 26:215–220.

    Article  CAS  Google Scholar 

  • Dupont, J.L., Gardette, R., and Crepel, F. (1983a). Olivocerebellar projections in control and staggerer mutant mice. Brain Res. 270:330–334.

    Article  PubMed  CAS  Google Scholar 

  • Dupont, J.L., Gardette, R., and Crepel, F. (1983b). Bioelectrical properties of cerebellar Purkinje cells in reeler mutant mice. Brain Res 274:350–353.

    Article  PubMed  CAS  Google Scholar 

  • Eccles, J.C., Ito, M., and Szentagothai, I. (1967). “The cerebellum as a neuronal machine.” Springer, Berlin.

    Google Scholar 

  • Gouzé, J.L., Lasry, J.M., and Changeux, J.P. (1983). Selective stabilization of muscle innervation during development: a mathematical model. Biol. Cybern. 46:207–215.

    Article  PubMed  Google Scholar 

  • Groenewegen, H.J., and Voogd, J. (1977). The parasagittal zonation within the olivocerebellar projections. I. Climbing fiber distribution in the vermis of cat cerebellum. J. Comp. Neurol. 174:417–488.

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara, S. (1983). “Membrane potential-dependent ion channels in cell membrane. Phylogenetic and developmental approaches.” Raven Press, New-York.

    Google Scholar 

  • Herrup, K., and Mullen, R.J. (1979). Regional variation and absence of large neurons in the cerebellum of the staggerer mouse. Brain Res. 172:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, A.F.W. (1968a). “Aspects of neural ontogeny.” Academic Press, London.

    Google Scholar 

  • Hughes, A.F.W. (1968b). Development of limb innervation, in: “Growth of the nervous system. A CIBA Foundation Symposium.”, G.E.W. Wolstenholme and M. O’Connor, eds. J.A. Churchill, London, pp 110–117.

    Google Scholar 

  • Innocenti, G.M., and Caminiti, R. (1980). Postnatal shaping of callosal connections from sensory areas. Exp. Brain Res. 38:381–394.

    Article  PubMed  CAS  Google Scholar 

  • Jan, Y.N., Jan, L.Y., and Dennis, M.J. (1977). Two mutations of synaptic transmission in Drosophila. Proc. R. Soc. B 198:87–108.

    Article  CAS  Google Scholar 

  • Koppel, H., and Innocenti, G.M. (1983). Is there a genuine exuberancy of callosal projections in development ? A qualitative electron microscopic study in the cat. Neurosci. Letters 41:33–40.

    Article  CAS  Google Scholar 

  • Kung, C., Chang, S.Y., Satow, Y., Van Houton, J., and Hansma H. (1975). Genetic dissection of behavior in Paramecium. Science 188:898–904.

    PubMed  CAS  Google Scholar 

  • Landis, D.M., and Sidman, R.L. (1978). Electron microscopic analysis of postnatal histogenesis in the cerebellar cortex of staggerer mutant mice. J. Comp. Neurol. 179:831–863.

    Article  PubMed  CAS  Google Scholar 

  • Llinas, R., and Sugimori, M. (1979). Calcium conductances in Purkinje cell dendrites: their role in development and integration. In “Developmental and chemical specificity of neurones. Progress in Brain Research, Vol. 51.” M. Cuenod, G.W. Kreutzberg and F.E. Bloom, eds., Elsevier, New-York, pp 323–334.

    Chapter  Google Scholar 

  • Llinas, R., and Sugimori, M. (1980a). Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J. Physiol. (Lond.) 305:171–195.

    CAS  Google Scholar 

  • Llinas, R., and Sugimori, M. (1980b). Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J. Physiol. (Lond.) 305:197–213.

    CAS  Google Scholar 

  • Mariani, J., and Changeux, J.P. (1980). Multiple innervation of Purkinje cells by climbing fibers in the cerebellum of the adult staggerer mutant mouse. J. Neurobiol. 11:41–50.

    Article  PubMed  CAS  Google Scholar 

  • Mariani, J., and Changeux, J.P. (1981a). Ontogenesis of olivocerebellar relationship. I. Studies by intracellular recordings of the multiple innervation of Purkinje cells by climbing fibers in the developing rat cerebellum. J. Neurosci. 1:696–702.

    PubMed  CAS  Google Scholar 

  • Mariani, J., and Changeux, J.P. (1981b). Ontogenesis of olivocerebellar relationship. II. Spontaneous activity of the inferior olivary neurons and climbing fiber-mediated activity of cerebellar Purkinje cells in developing rats. J. Neurosci. 1:703–709.

    PubMed  CAS  Google Scholar 

  • Mariani, J., Crepel, F., Mikoshiba, K., Changeux, J.P., and Sotelo, C. (1977). Anatomical, physiological and biochemical studies of the cerebellum from reeler mutant mouse. Phil. Trans. B 281:1–28.

    Article  CAS  Google Scholar 

  • Meyer, R.L., and Sperry, R.W. (1976). Retinotectal specificity: chemoaffinity theory. In “Neural and behavorial specificity. Studies on the development of behavior and the nervous system, Vol. 3.” Academic Press, New-York, pp 111–149.

    Google Scholar 

  • Peacock, J.M., and Walker, C.R. (1983). Development of calcium action potentials in mouse hippocampal cell cultures. Dev. Brain Res. 8:39–52.

    Article  CAS  Google Scholar 

  • Purves, D. (1983). Modulation of neuronal competition by postsynaptic geometry in autonomic ganglia. Trends in Neurosci. 6:10–16.

    Article  Google Scholar 

  • Ramon, Cajal, S. (1911). “Histologie du Système Nerveux de l’Homme et des Vertébrés.” Instituto Ramon, Cajal, Madrid.

    Google Scholar 

  • Redfern, P.A. (1970). Neuromuscular transmission in new-born rats. J. Physiol. (Lond.) 209:701–709.

    CAS  Google Scholar 

  • Salkoff, L., and Wyman, R. (1983). Ion channels in Drosophila muscle. Trends in Neurosci. 6:128–133.

    Article  Google Scholar 

  • Schwartzkroin, P.A. (1981). Development of rabbit hippocampus: physiology. Dev. Brain Res. 2:469–486.

    Article  Google Scholar 

  • Schwartzkroin, P.A., and Slansky, M. (1977). Probable calcium spikes in hippocampal neurons. Brain Res. 135:157–161.

    Article  PubMed  CAS  Google Scholar 

  • Shimono, T., Nosaka, S., and Sasaki, K. (1976). Electrophysiological study on the postnatal development of neuronal mechanisms in the rat cerebellar cortex. Brain Res. 108:279–294.

    Article  PubMed  CAS  Google Scholar 

  • Sidman, R.L. (1972). Cell interactions in developing mammalian central nervous system. In “Cell interactions. Proceedings of the Third Lepetit Colloqium.” L.G. Silvestri, ed., North-Holland, Amsterdam, pp 1–13.

    Google Scholar 

  • Sotelo, C. (1980). Mutant mice and the formation of cerebellar circuits. Trends in Neurosci. 3:33–36.

    Article  Google Scholar 

  • Sotelo, C., Bourrat, F., and Triller, A. (1984). Postnatal development of the inferior olivary complex in the rat. II. Topographic organization of the immature olivocerebellar projections. J. Comp. Neurol, in press.

    Google Scholar 

  • Sotelo, C., and Chang eux, J. P. (1974). Transsynaptic degeneration en cascade in the cerebellar cortex of staggerer mutant mice. Brain Res. 67:319–326.

    Article  Google Scholar 

  • Sperry, R.W. (1963). Chemoaff inity in the orderly growth of neural circuits. Proc. Natl. Acad. Sci. (USA) 50:703–710.

    Article  CAS  Google Scholar 

  • Spitzer, N.C. (1982). The development of electrical excitability. In “Neuronal-glial cell interrelationships.” T.A. Sears, ed., Springer-Verlag, Berlin, pp 77–91.

    Chapter  Google Scholar 

  • Thach, W.T. (1968). Discharge of Purkinje and cerebellar nuclear neurons during rapidly alterning arm movements in the monkey. J. Neurophysiol. 31:785–797.

    PubMed  CAS  Google Scholar 

  • Von der Malsburg, C., and Willshaw, D.J. (1977). How to label nerve cells so that they can interconnect in an ordered fashion. Proc. Natl. Acad. Sci. (USA) 74:5176–5178.

    Article  Google Scholar 

  • Woodward, D.J., Hoffer, B.J., and Altman, J. (1974). Physiological and pharmacological properties of Purkinje cells in rat cerebellum degranulated by postnatal X-irradiation. J. Neurobiol. 5:283–304.

    Article  PubMed  CAS  Google Scholar 

  • Woodward, D.J., Hoffer, B.J., Siggins, G.R., and Bloom, F.E. (1971). The ontogenetic development of synaptic junctions, synaptic activation and responsiveness to neurotransmitter substances in the rat cerebellar Purkinje cells. Brain Res. 34:73–97.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C.F., and Ganetzky, B. (1980). Genetic alteration of nerve membrane excitability in temperature sensitive paralytic mutants of Drosophila melanogaster. Nature 286: 814–816.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Crepel, F., Dupont, JL., Gardette, R. (1984). Genetic Control of the Connectivity and Excitability of Cerebellar Purkinje Cells in Rodents. In: Lauder, J.M., Nelson, P.G. (eds) Gene Expression and Cell-Cell Interactions in the Developing Nervous System. Advances in Experimental Medicine and Biology, vol 181. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4868-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4868-9_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4870-2

  • Online ISBN: 978-1-4684-4868-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics