Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 181))

Abstract

The detection and identification of macromolecular species amidst a vastly complex background is a major problem in neurobiology. Therefore, we wish to begin by making a few introductory remarks pertaining to present estimates of macromolecular complexity of the brain. Genes and their transcripts are the first and second orders respectively of the vast molecular complexity of the brain. The first measurements relevant to estimating the extent to which “single” copy DNA (scDNA or DNA which encodes most of the different proteins) is transcribed in mammalian organs were made about 14 years ago (Hahn, 1970; Hahn & Laird, 1971). These initial measurements, although confirmed by others (Brown & Church, 1971; Grouse, Chilton, & McCarthy, 1972; reviewed by Kaplan & Finch, 1982), were underestimates. But they nonetheless showed that very complex arrays of RNA species are present in eukaryotic cells and organs. We now know that in the mammalian brain (mouse and rat) at least 18–20% of the scDNA is transcribed as nuclear RNA (=~40% of the haploid coding capacity) (Bantle & Hahn, 1976; Chikaraishi, Deeb & Sueoka, 1978). Most of these different transcripts apparently reside in the nuclear RNA of neurons (Ozawa, Kushiya & Takahashi, 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnon, R., 1980, Chemically defined antiviral vaccines, Ann. Rev. Microbiol., 34:593.

    Article  CAS  Google Scholar 

  • Bantle, J. A., Courchesne, C. L., and Couch, M., 1980, Complexity and complexity overlap in mouse liver polyadenylated and nonadenylated messenger RNA fractions, Biochem. Biophys. Res. Commun., 95:1710.

    Article  PubMed  CAS  Google Scholar 

  • Bantle, J. A., and Hahn, W. E., 1976, Complexity and characterization of polyadenylated RNA in the mouse brain, Cell, 8:139.

    Article  PubMed  CAS  Google Scholar 

  • Brown, J. R., and Church, R. B., 1971, RNA transcription from nonrepetitive DNA in the mouse, Biochem. Biophys. Res. Commun., 42:850.

    Article  PubMed  CAS  Google Scholar 

  • Chaudhari, N., and Hahn, W. E., 1983, Genetic expression in the developing brain. Science, 220:924.

    Article  PubMed  CAS  Google Scholar 

  • Chikaraishi, D. M., 1979, Complexity of cytoplasmic polyadenylated and nonpolyadenylated rat brain ribonucleic acids, Biochem., 18:3249.

    Article  CAS  Google Scholar 

  • Chikaraishi, D. M., Deeb, S. S., and Sueoka, N., 1978, Sequence complexity of nuclear RNAs in adult rat tissues, Cell 13:111.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, E. H., and Britten, R. J., 1979, Regulation of gene expression: Possible role of repetitive sequences, Science, 204:1052.

    Article  PubMed  CAS  Google Scholar 

  • Grouse, L. D., Chilton, M. D., and McCarthy, B. J., 1972, Hybridization of ribonucleic acid with unique sequences of mouse deoxyribonucleic acid, Biochem. 11:798.

    Article  CAS  Google Scholar 

  • Grouse, L. D., Omenn, G. S., and McCarthy, B. J., 1973, Studies by DNA-RNA hybridization of transcriptional diversity in human brain, J. Neurochem., 30:191.

    Article  Google Scholar 

  • Hahn, W. E., 1970, Transcription of non repeated DNA in brain, J. Cell Biol., 10:31.

    Google Scholar 

  • Hahn, W. E., Chaudhari, N., Beck, L., Wilber, K., and Peffley, D., 1983, Genetic expression and postnatal development of the brain: Some characteristics of nonpolyadenylated mRNAs, Cold Spring Harbor Symposia, Vol. 48, Chap. 24, Cold Spring Harbor, NY.

    Google Scholar 

  • Hahn, W. E., and Laird, C. D., 1971, Transcription of non repeated DNA in mouse brain. Science 173:158.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, W. E., Pettijohn, D. E., and Van Ness, J., 1977, One strand equivalent of the Escherichia coli genome is transcribed: Complexity and abundance classes of mRNA, Science, 197:582.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, B. B., and Finch, C. E., The sequence complexity of brain ribonucleic acids. IN: “Molecular Approaches to Neurobiology,” I. R. Brown, ed., Academic Press, N.Y., (1982).

    Google Scholar 

  • Lerner, R. A., 1982, Tapping the immunological repertoire to produce antibodies of predetermined specificity, Nature, 299:592.

    Article  CAS  Google Scholar 

  • Lumsden, C. J., and Wilson, E. O., 1981, Genes, mind and culture, Harvard University Press, Cambridge.

    Google Scholar 

  • Martin, S. L., Zimmer, E. A., Davidson, W. S., Wilson, A. C., and Kan, Y. W., The untranslated regions of β-globin mRNA evolve at a functional rate in higher primates, Cell, 25:737.

    Google Scholar 

  • Maxwell, I. H., Maxwell, F., and Hahn, W. E., 1980, General occurrence and transcription of intervening sequences in mouse genes expressed via polyadenylated mRNA, Nuc. Acids Res., 8:5875.

    Article  CAS  Google Scholar 

  • Milner, R. J., and Sutcliffe, J. G., 1983, Gene expression in rat brain, Nuc. Acids Res., 11:5497.

    Article  CAS  Google Scholar 

  • Morrison, M. R., Pardue, S., & Griffin, W. S. T., 1981, Developmental alterations in the levels of translationally active mRNAs in the postnatal rat cerebellum, J. Biol. Chem., 256(7):3550.

    PubMed  CAS  Google Scholar 

  • O’Brien, S. J., 1973, On estimating functional gene numbers in eukaryotes, Nature, 242:52.

    Google Scholar 

  • Ohno, S., 1971, Simplicity of mammalian regulatory systems inferred by single gene determinations of sex phenotypes, Nature, 234:134.

    Article  CAS  Google Scholar 

  • Ouellette, A. J., Ordahl, C. P., Van Mess, J., and Malt, R. A., 1982, Mouse kidney nonpolysomal messenger RNA: Metabolism, coding function and translational activity, Biochem., 21:1169.

    Article  CAS  Google Scholar 

  • Ozawa, H., Kushiya, E., and Takahashi, Y., 1980, Complexity of RNA from the neuronal and glial nuclei, Neurosci. Lett., 18:191.

    Article  PubMed  CAS  Google Scholar 

  • Rosbash, M., Campo, M.S., and Gummerson, K. S., 1975, Conservation of cytoplasmic poly (A)-containing RNA in mouse and rat, Nature, 258:582.

    Google Scholar 

  • Savage, M. J., Sala-Trepat, J. M., and Bonner, J., 1978, Measurement of the complexity and diversity of poly (adenylic acid) containing messenger RNA from rat liver, Biochem., 17:462.

    Article  CAS  Google Scholar 

  • Seidman, J. G., and Leder, P., 1978, The arrangement and rearrangement of antibody genes, Nature, 276:790.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd, G. W., and Nemer, M., 1980, Developmental shifts in frequency distibution of polysoma 1 mRNA and their posttranscriptional regulation in the sea urchin embryo, Proc. Natl. Acad. Sci., USA, 77:4653.

    Article  PubMed  CAS  Google Scholar 

  • Shinnick, T. M., Sutcliffe, J. G., Green, N., and Lerner, R. A., 1983, Synthetic peptide immunogens as vaccines, Ann. Rev. Microbiol., 37:425.

    Article  CAS  Google Scholar 

  • Sutcliffe, J. G., Milner, R. J., Shinnick, T. M., and Bloom, F. E., 1983, Identifying the protein products of brain-specific genes with antibodies to chemically synthesized peptides, Cell, 33:671.

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe, J. G., Milner, R. J., Bloom, F. E., and Lerner, R. A., 1982, Common 82-nucleotide sequence unique to brain RNA, Proc. Natl. Acad. Sci., 79:4942.

    Article  PubMed  CAS  Google Scholar 

  • Van Ness, J., and Hahn, W. E., 1980, Sequence complexity of cDNA transcribed from a diverse mRNA population, Nuc. Acids Res., 8:4259.

    Article  Google Scholar 

  • Van Ness, J., and Hahn, W. E., 1983, Physical parameters affectingthe rate and completion of RNA driven hybridization of DNA: New measurements relevant to quantitation based on kinetics, Nuc. Acids Res., 10:8061.

    Article  Google Scholar 

  • Van Ness, J., Maxwell, I. H., and Hahn, W. E., 1979, Complex population of nonpolyadenylated messenger RNA in mouse brain, Cell, 8:1341.

    Article  Google Scholar 

  • Weigert, M., Gatmaitan, L., Loh, E., Schilling, J., and Hood, L., 1978, Rearrangement of genetic information may produce immunoglobulin diversity, Nature, 276:2785.

    Article  Google Scholar 

  • Xin, J., Brandhorst, B. P., Britten, R. J., and Davidson, E. H., 1982, Cloned embryo mRNAs not detectably expressed in adult sea urchin coelomocytes, Devel. Biol., 89, 527.

    Article  CAS  Google Scholar 

  • Young, B. D., Birnie, G. D., and Paul, J., 1976, Complexity and specificity of polysoma1 poly(A) mRNA in mouse tissues, Biochem., 15:2823.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Hahn, W.E., Chaudhari, N. (1984). Genetic Perspectives on Brain Development and Complexity. In: Lauder, J.M., Nelson, P.G. (eds) Gene Expression and Cell-Cell Interactions in the Developing Nervous System. Advances in Experimental Medicine and Biology, vol 181. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4868-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4868-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4870-2

  • Online ISBN: 978-1-4684-4868-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics