Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 181))

Abstract

The acetylcholine receptor (AcChoR) is one of the best known membrane-bound allosteric proteins (reviewed by Changeux, 1981; Changeux et al., 1984). Integrated in the post-synaptic membrane of the cholinergic synapse (neuromuscular junction, electromotor synapse), it regulates the opening of a cation-selective ionic channel upon binding of the neurotransmitter (acetylcholine). In the course of the past fifteen years, the protein assembly which carries both the acetylcholine binding sites and the ion channel has been isolated and purified from fish (Electrophorus, Torpedo) electric organ and vertebrate muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, D.J. and Blobel, G. (1981). In vitro synthesis, glycosylation, and membrane insertion of the four subunits of Torpedo acetylcholine receptor Proc. Natl. Acad. Sci. USA, 78, 5598–5602.

    Article  PubMed  CAS  Google Scholar 

  • Ballivet, M., Patrick, J., Lee, J. and Heinemann, S. (1982). Molecular cloning of cDNA coding for the γ-subunit of Torpedo acetylcholine receptor. Proc. Natl. Acad. Sci. USA, 79, 4466–4470.

    Article  PubMed  CAS  Google Scholar 

  • Cartaud, J., Benedetti, L., Sobel, A. and Changeux, J-P. (1978). A morphological study of the cholinergic receptor protein from Torpedo marmorata in its membrane environment and its detergent extracted purified form. J. Cell. Sci. 29, 313–337.

    PubMed  CAS  Google Scholar 

  • Changeux, J-P. (1981). The acetylcholine receptor: an “allosteric” membrane protein. The Harvey Lectures 75, 85–254.

    CAS  Google Scholar 

  • Changeux, J-P., Bon, F., Cartaud J., Devillers-Thiéry, A., Giraudat, J., Heidmann, T., Holton, B., Ngiêm, H.O., Popot, J-L., Van Rapenbusch, R. and Tzartos, S., (1984). Allosteric properties of the acetylcholine receptor protein from Torpedo marmorata. Cold Spring Harbor Symp. Quant. Biol. 48 (in press).

    Google Scholar 

  • Changeux, J-P. and Danchin, A. (1976). Selective stabilization of developing synapses as a mechanism for the specification of neuronal networks. Nature, 264, 705–712.

    Article  PubMed  CAS  Google Scholar 

  • Claudio, T., Ballivet, M., Patrick, J. and Heinemann, S. (1983). Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor γ-subunit. Proc. Natl. Acad. Sci. USA, 80, 1111–1115.

    Article  PubMed  CAS  Google Scholar 

  • Devillers-Thiéry, A., Changeux, J-P., Paroutaud, P. and Strosberg, A.D. (1979). The amino-terminal sequence of the 40K subunit of the acetylcholine receptor protein from Torpedo marmorata. FEBS Lett. 104, 99–105

    Article  PubMed  Google Scholar 

  • Devillers-Thiéry, A., Giraudat, J., Bentaboulet, M. and Changeux, J-P.(1983). Complete mRNA coding sequence of the acetylcholine binding α -subunit from Torpedo marmorata acetylcholine receptor. A model for the transmembrane organization of the polypeptide chain. Proc. Natl. Acad. Sci. U.S.A., 80, 2067–2071

    Article  PubMed  Google Scholar 

  • Dwyer, T.M., Adams, D. and Hille, B. (1980). The permeability of the endplate channel to organic cations in frog muscle. J. Gen. Physiol. 75, 469–492.

    Article  PubMed  CAS  Google Scholar 

  • Engelman, D.M., Henderson, R., Mc Lachlan, A.D. and Wallace, B.A (1980). Path of the polypeptide in bacteriorhodopsin. Proc. Natl. Acad. Sci. USA, 77, 2023–2027.

    Article  PubMed  CAS  Google Scholar 

  • Fambrough, D. (1979). Control of acetylcholine receptors in skeletal muscle. Physiol. Rev. 59, 165–277.

    PubMed  CAS  Google Scholar 

  • Finer-Moore, J. and Stroud, R.M. (1984). Amphiphatic analysis and possible formation of the ion channel in acetylcholine receptor. Proc. Natl. Acad. Sci. USA, 81, 155–159.

    Article  PubMed  CAS  Google Scholar 

  • Giraudat, J., Devillers-Thiery, A., Auffray, C., Rougeon, F.. and Changeux, J-P. Identification of a cDNA clone coding for the acetylcholine binding subunit of Torpedo marmorata acetylcholine receptor. EMBO J. I, 713–717.

    Google Scholar 

  • Guy, R. (1984). A structural model of the acetylcholine receptor channel based on partition energy and helix packing calculations. Biophysical J. (in press).

    Google Scholar 

  • Gysin, R., Wirth, M. and Flanagan, S. (1981). Structural heterogeneity and sub-cellular distribution of nicotinic synapse associated proteins. J. Biol. Chora. 256, 11373–11376.

    CAS  Google Scholar 

  • Heidmann, T., Oswald, R. and Changeux, J-P. (1983a). Le site de liaison de haute affinité de la chlorpromazine est présent à un seul exemplaire par molécule de récepteur cholinergique et est commun aux 4 chaînes polypeptides. C.R. Acad. Sci. 295, 345–349.

    Google Scholar 

  • Heidmann, T., Oswald, R. and Changeux, J-P. (1983b). Multiple sites of action for non-conpetitive blockers on acetylcholine receptor-rich membrane fragments from Torpedo marmorata. Biochemistry, 22, 3112–3127.

    Article  PubMed  CAS  Google Scholar 

  • Karlin, A. (1980). In “Cell Surface Reviews” (Poste, G., Nicolson, G.L. and Cotman, C.W. Eds). Elsevier North Holland Inc. New-York, 6, 191–260.

    Google Scholar 

  • Kistler, J., Stroud, R.M., Klymkovsky, M.W., Lalancette R.A. and Fairclough, R.H. (1982). Structure and function of an acetylcholine receptor. Biophys. J. 37, 371–383.

    Article  PubMed  CAS  Google Scholar 

  • Klarsfeld, A., Devillers-Thiéry, A., Giraudat, J. and Changeux, J-P. (1984). A single gene codes for the nicotinic acetylcholine receptor ou subunit in Torpedo marmorata: structural and developmental implications. IMBO J. 3, 35–41

    CAS  Google Scholar 

  • Kosower, E. (1983). Partial tertiary structure assignments for the β, γ and δ subunits of the acetylcholine receptor on the basis of the hydrophobicity of amino acid sequences and channel location using single group rotation theory. FEBS Lett. 155, 245–247.

    Article  PubMed  CAS  Google Scholar 

  • Maxam, A.M. and Gilbert, W. (1980). Sequencing end-labeled DNA with base specific chemical cleavages. In Methods in Enzymology 65, 499–560.

    Article  CAS  Google Scholar 

  • Mendez, B., Valenzuela, P., Martial, J.A and Baxter, J.D (1980). Cell-free synthesis of acetylcholine receptor polypeptides. Science 209, 695–697.

    Article  PubMed  CAS  Google Scholar 

  • Merlie, J-P., Sebbane, R., Gardner, S. and Lindstrom, J. (1983). cDNA clone for the α-subunit of the acetylcholine receptor from the mouse muscle cell line BC3H-1. Proc. Natl. Acad. Sci. USA, 80, 3845–3849.

    Article  PubMed  CAS  Google Scholar 

  • Nghiêm, H.O., Cartaud, J., Dubreuil, C., Buttin, G. and Changeux, J-P. (1983).Production and characterization of a monoclonal antibody directed against the 43,000 MW polypeptide from Torpedo marmorata electric organ. Proc. Natl. Acad. Sci. U.S.A, 80, 6403–6407.

    Article  PubMed  Google Scholar 

  • Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T. and Numa, S. (1982). Primary structure of α-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature, 299, 793–797.

    Article  PubMed  CAS  Google Scholar 

  • Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Tanabe, T., Shiraizu, S., Kikyotani, S., Kayano, T., Hirose, T., Inayama, S. and Numa, S. (1983a). Cloning and sequence analysis of calf cDNA and human genomic DNA encoding α-subunit precursor of muscle acetylcholine receptor. Nature, 305, 818–823

    Article  PubMed  CAS  Google Scholar 

  • Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Hirose, T., Asai, M., Takashima, H., Inayama, S., Miyata, T. and Numa, S. (1983). Primary structures of β and δ subunit precursors of T. californica acetylcholine receptor deduced from cDNA sequences. Nature, 301, 251–255.

    Article  PubMed  CAS  Google Scholar 

  • Noda, M., Takahasi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Furutani, Y., Hirose, T., Takashima, H., Inayama, S., Miyata, T. and Numa, S. (1983). Structural homology of Torpedo californica AchR subunits. Nature, 302, 528–532.

    Article  PubMed  CAS  Google Scholar 

  • Oswald, R. and Changeux, J-P. (198l).Ultraviolet light induced labeling by non-competitive blockers of the acetylcholine receptor from Torpedo marmorata. Proc. Natl. Acad. Sci., USA, 78, 3925–3929.

    Article  Google Scholar 

  • Ploegh, H.L., Ou, H.T., Strominger, J.L (1980). Molecular cloning of a human histocompatibility antigen cDNA fragment. Proc. Natl. Acad. Sci. USA, 77, 6081–6085.

    Article  PubMed  CAS  Google Scholar 

  • Raftery, M.A., Hunkapiller, M., Strader, C. and Hood, L.E. (1980). Acetylcholine receptor: complex of homologous subunits. Science 208, 1454–1457.

    Article  PubMed  CAS  Google Scholar 

  • Ricciardi, R.P., Miller, J.S. and Roberto, B.E. (1979). Purification and mapping of specific mRNAs by hybridization-selection and cell-free translation. Proc. Natl. Acad. Sci. USA 76, 4927–4931.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh, T. and Changeux, J-P. (1980). Phosphorylation in vitro of membrane fragments from Torpedo marmorata electric organ. Effect on membrane solubilization by detergents. Eur. J. Biochem. 105, 51–62.

    Article  PubMed  CAS  Google Scholar 

  • Sumikawa, K., Hougton, M., Smith, J.C., Bell, L., Richards, B.M. and Barnard, E.A. (1982). The molecular cloning and characterization of cDNA coding for the α-subunit of the acetylcholine receptor. Nucleic Acids Res. 10, 5809–5822.

    Article  PubMed  CAS  Google Scholar 

  • Tzartos, S. and Lindstrom, J. (1980). Monoclonal antibodies used to probe acetylcholine receptor structure. Proc. Natl. Acad. Sci. USA 77, 755–759.

    Article  PubMed  CAS  Google Scholar 

  • Von Heijne, G. (1981). Membrane proteins. The amino acid composition of membrane-penetrating segments. Eur. J. Biochem. 120, 275–278.

    Article  Google Scholar 

  • Wennogle, L. and Changeux, J-P. (1982). Transmembrane orientation of proteins present in acetylcholine receptor-rich membranes from Torpedo marmorata studied by selective proteolysis. Eur. J. Biochem. 106, 381–393.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Devillers-Thiery, A., Giraudat, J., Bentaboulet, M., Klarsfeld, A., Changeux, J.P. (1984). Molecular Genetics of Torpedo Marmorata Acetylcholine Receptor. In: Lauder, J.M., Nelson, P.G. (eds) Gene Expression and Cell-Cell Interactions in the Developing Nervous System. Advances in Experimental Medicine and Biology, vol 181. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4868-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4868-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4870-2

  • Online ISBN: 978-1-4684-4868-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics