Skip to main content

Osmoregulatory (Osm) Genes and Osmoprotective Compounds

  • Chapter
Genetic Engineering of Plants

Part of the book series: Basic Life Sciences ((BLSC,volume 26))

Abstract

A series of compounds, including glycine betaine and proline, known to accumulate in plants during osmotic stress, have been found to function as osmoprotective compounds for bacteria. In fulfilling “Koch’s Postulates” for the biological activity of these compounds, they have been found to protect against osmotic stress when added to the growth medium in relatively low concentration, or when synthesized in the cell. Cells may accumulate very high intracellular levels corresponding to the osmolarity of the medium using uptake systems that appear to be osmotically modulated. A proline overproducing mutation conferring osmotic tolerance has been constructed. Molecular cloning of an osmotic tolerance gene has been achieved. A unified concept of osmoregulation in microorganisms, animals and plants is discussed with some possible applications being pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raper, C.D., and P.J. Kramer, eds. 1982. Crop Reactions to Water and Temperature Stresses in Humid, Temperate Climates. Westview Press, Boulder, Colorado.

    Google Scholar 

  2. Rains, D.W., R.C. Valentine, and A. Hollaender, eds. 1980. Genetic Engineering of Osmoregulation: Impact on Plant Productivity for Food, Chemicals, and Energy. Plenum Press, New York.

    Google Scholar 

  3. Hollaender, A., J.C. Aller, E. Epstein, A. San Pietro, and O.R. Zaborsky, eds. 1979. The Biosaline Concept: An Approach to the Utilization of Underexploited Resources. Plenum Press, New York.

    Google Scholar 

  4. San Pietro, A., ed. 1982. Biosaline Research: A Look to the Future. Plenum Publishing Corporation, New York.

    Google Scholar 

  5. Paleg, L.G., and D. Aspinall, eds. 1981. The Physiology and Biochemistry of Drought Resistance in Plants. Academic Press, Sydney.

    Google Scholar 

  6. Wyn Jones, R.G., and R. Storey. 1981. Betaines. In The Physiology and Biochemistry of Drought Resistance in Plants. L.G. Paleg and D. Aspinell, eds. Academic Press, Sydney, pp. 171–204.

    Google Scholar 

  7. Christian, J.H.B. 1955. The influence of nutrition on the water relations of Salmonella orianenburg. Aust. J. Biol. Sci. 8: 75–82.

    Google Scholar 

  8. Christian, J.H.B. 1955. The water relations of growth and respiration of Salmonella orianenburg at 30°C. Aust. J. Biol. Sci. 8: 490–497.

    Google Scholar 

  9. Britten, R.J., and F.T. McClure. 1962. The amino acid pool in Escherichia coli. Bacteriol. Rev. 26: 292–335.

    Google Scholar 

  10. Rafaeli-Eshkol, D., and Y. Avi-Dor. 1968. Studies on halotolerance in a moderately halophilic bacterium. Effect of betaine on salt resistance of the respiratory system. Biochem. 109: 687–691.

    Google Scholar 

  11. Shkedy-Vinkler, C., and Y. Avi-Dor. 1975. Betaine-induced stimulation of respiration at high osmolarities in a halotolerant bacterium. Biochem. J. 150: 219–226.

    Google Scholar 

  12. Le Rudulier, D., and R.C. Valentine. 1982. Genetic engineering in agriculture: Osmoregulation. Trends in Biochem. Sci. 427, (in press).

    Google Scholar 

  13. Csonka, L.N. 1980. The role of L-proline in response to osmotic stress in Salmonella typhimurium: Selection of mutants with increased osmotolerance as strains which over-produce L-proline. In Genetic Engineering of Osmoregulation. D.W. Rains, R.L. Valentine, and A. Hollaender, eds. Plenum Press, New York, pp. 35–52.

    Chapter  Google Scholar 

  14. Csonka, L.N. 1981. The Role of Proline in Osmoregulation in Salmonella Typhimurium and Escherichia Coli. In Trends in the Biology of Fermentations for Fuels and Chemicals. A. Hollaender, R. Rabson, P. Rogers, A. San Pietro, R. Valentine, and R. Wolfe, eds. Plenum Publishing Corporation, New York, pp. 533–542.

    Chapter  Google Scholar 

  15. Csonka, L.N. 1981. Proline over-production results in enhanced osmotolerance in Salmonella typhimurium. Molec. Gen. Genet. 182: 82–86.

    Google Scholar 

  16. Rains, D.W., L. Csonka, D. Le Rudulier, T. P. Croughan, S.S. Yang, S.J. Stavarek, and R.C. Valentine. 1982. Osmoregulation by organisms exposed to saline stress: physiological mechanisms and genetic manipulation. Biosaline Research: A Look to the Future. A.S. Pietro, ed. Plenum Publishing Corporation, New York, pp. 283–302.

    Google Scholar 

  17. Measures, J.C. 1975. Role of amino acids in osmoregulation in non-halophilic bacteria. Nature 257: 398–400.

    Article  PubMed  CAS  Google Scholar 

  18. Laimins, L.A., D.B. Rhoads, and W. Epstein. 1981. Osmotic control of kpd operon expression in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 78: 464–468.

    Google Scholar 

  19. Miller, J.F. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  20. Le Rudulier, D., G. Goas, and F. Larher. 1982. Onium compounds, amides and amino acid levels in nodules and other organs of nitrogen fixing plants. Z. Planzenphysiol. 105: 417–426.

    Google Scholar 

  21. Baich, A. 1969. Proline synthesis in Escherichia coli. A proline-inhibitable glutamic acid kinase. Biochim. Biophys. Acta 192: 462–467.

    Google Scholar 

  22. Baich, A. and D.J. Pierson. 1965. Control of proline synthesis in Escherichia coli. Biochim. Biophys. Acta 104: 397–404.

    Google Scholar 

  23. Ikuta, S., S. Imamura, H. Misaki, and Y. Horiuti. 1977. Purification and characterization of choline oxidase from Arthrobacter globiformis. J. Biochem. 82: 1741–1749.

    PubMed  CAS  Google Scholar 

  24. Nagasawa, T., Y. Kawabata, Y. Tani, and K. Ogata. 1975. Choline dehydrogenase of Pseudomonas aeruginosa A-16. Agric. Biol. Chem. 39: 1513–1514.

    Google Scholar 

  25. Rafaeli-Eshkol, D., 1968. Studies on halotolerance in a moderately halophilic bacterium. Effect of growth conditions on salt resistance of the respiratory system. Biochem. J. 109: 679–685.

    Google Scholar 

  26. Galinski, E.A. and H.G. Truper. 1982. Betaine, a compatible solute in the extremely halophilic phototrophic bacterium Ectothiorhodospira halochloris. FEMS Microbiol. Lett. 13: 357–360.

    Google Scholar 

  27. Blau, K., 1961. Chromatographic methods for the study of amines from biological material. Biochem. J. 80: 193–200.

    Google Scholar 

  28. Kaback, H.R., and T.G. Deuel. 1969. Proline uptake by disrupted membrane preparations from Escherichia coli. Arch. Biochem. Biophys. 132: 118–129.

    Google Scholar 

  29. Kohno, T., and J.R, Roth. 1979. Electrolyte effects on the activity of mutant enzymes in vivo and in vitro. Biochemistry, 18: 1386–1392.

    Article  PubMed  CAS  Google Scholar 

  30. Vinopal, R.T., S.A. Wartell, and K.S. Kolowsky. 1980. ß-galactosidase from osmotic remedial lactose utilization mutants of E. coli. In Genetic Engineering of Osmoregulation. D.W. Rains, R.C. Valentine, and A. Hollaender, eds. Plenum Press, New York, pp. 59–72.

    Chapter  Google Scholar 

  31. Fincham, J.R.S., and A.J. Baron. 1977. The molecular basis of an osmotically separable mutant of Neurospora crassa producing unstable glutamate dehydrogenase. Mol. Biol. 110: 627–642.

    Google Scholar 

  32. Strom, A.R. 1979. Biosynthesis of trimethylamine oxide in calanoid copepods. Seasonal changes in trimethylamine monoxygenase activity. Marine Biol. 51: 33–40.

    Google Scholar 

  33. Agustsson, I., and A.R. Strom. 1981. Biosynthesis and turnover of trimethylamine oxide in the teleost cod, Gadus morhua. J. Biol. Chem. 256: 8045–8049.

    Google Scholar 

  34. Shewan, J. M. 1951. The chemistry and metabolism of the nitrogenous extractives in fish. In The Biochemistry of Fish. R.T. Williams, ed. Cambridge: Biochemical Society Symposia 6, pp. 28–48.

    Google Scholar 

  35. Schoffeniels, E., and R. Giles. 1970. Nitrogen constituents and nitrogen metabolisms in arthropods. In Chemical Zoology. M. Florkin, and B.T. Scheer, eds. Academic Press, New York. Vol. 5, part A, pp. 199–227.

    Google Scholar 

  36. Gilles, R. 1971. Mechanisms of ion and osmoregulation. In Marine Ecology. A Comprehensive, Integrated Treatise on Life in Oceans and Coastal Waters. O. Kinne, ed. John Wiley and Sons, Chichester. Vol. 2, part 1, pp. 257–347.

    Google Scholar 

  37. Wright, D.J. and D.R. Newall. 1981. Osmotic and ionic regulation in nematodes. In Nematodes as Biological Models. B.M. Zuckerman, ed. Academic Press, Inc., New York. Vol. 2, pp. 143–164.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Strøm, A.R., LeRudulier, D., Jakowec, M.W., Bunnell, R.C., Valentine, R.C. (1983). Osmoregulatory (Osm) Genes and Osmoprotective Compounds. In: Kosuge, T., Meredith, C.P., Hollaender, A., Wilson, C.M. (eds) Genetic Engineering of Plants. Basic Life Sciences, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4544-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4544-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4546-6

  • Online ISBN: 978-1-4684-4544-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics