Skip to main content

Microiontophoretic Application of Drugs onto Single Neurons

  • Chapter
Principles of Receptor Research

Part of the book series: Handbook of Psychopharmacology ((SIBN,volume 2))

  • 51 Accesses

Abstract

To many of us, the ultimate test of transmitter identity is the demonstration that a putative transmitter substance when applied to a single neuron has the ability to mimic the effects of the naturally occurring transmitter. It follows, therefore, that a great deal of ingenuity has been devoted to developing techniques which leave the neural elements of the tissue intact and yet allow test substances to be applied directly onto the neurons for which they are believed to have an affinity. Ideally, the application should be restricted to the postjunctional receptors, or at least to the synaptic regions of the neuron thought to be operated by the transmitter under study. Often, however, we are content to apply our substances into the rough vicinity of the neuron, perhaps as much as 30–60 μm from the neural membrane. This technique also has an attraction for pharmacologists since substances thought to act in a specific fashion at a particular synapse can be tested directly for their ability to antagonize, potentiate, or mimic the actions of the naturally occurring transmitter. This chapter is therefore primarily concerned with the techniques used to eject pharmacologically active agents into the extracellular space of neurons with fine glass microelectrodes (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adrian, R. H.: 1956. The effect of internal and external potassium concentration on the membrane potential of the frog muscle, J. Physiol. 133: 631–658.

    PubMed  Google Scholar 

  • Anderson, C. R., Stevens, C. F.: 1973. Voltage clamp analysis of acetylcholine produced end-plate current fluctuation at frog neuromuscular junction, J. Physiol. 235: 655–692.

    PubMed  Google Scholar 

  • Bingley, M. S.: 1965. The generation of potentials due to fluid flow and applied pressure, paper presented at the Society for Experimental Biology Conference, April 1965.

    Google Scholar 

  • Biscoe, T. J., Curtis, D. R.: 1967. Strychnine and cortical inhibition, Nature 214: 914–915.

    Article  PubMed  Google Scholar 

  • Bloom, F. E.: 1974. To spritz or not to spritz: The doubtful value of aimless iontophoresis, Life Sci. 14: 1819–1834.

    Article  PubMed  Google Scholar 

  • Bloom, F. E., Siggins, G. R., Hoffer, B. J.: 1974. Interpreting the failure to confirm the depression of cerebellar Purkinje cells by cyclic AMP, Science, 185: 627–629.

    Article  PubMed  Google Scholar 

  • Bradley, P. B., Candy, J. M.: 1970. Iontophoretic release of acetylcholine, noradrenaline, 5-hydroxytryptamine and D-lysergic acid diethylamide from micropipettes, Brit. J. Pharmacol. 40: 194–201.

    Google Scholar 

  • Bradley, P. B., Roberts, M. H. T., Straughan, D. W.: 1974. Recent advances in methods for studying the pharmacology of single cortical neurons. Neuropharmacology (Special Issue) 13: 401 - 573.

    Google Scholar 

  • Bradshaw, C. M., Roberts, M. H. T., Szabadi, E.: 1973a. Comparison of the effects of imipramine and desipramine on single cortical neurones, Brit. J. Pharmacol. 48: 358–359 P.

    Google Scholar 

  • Bradshaw, C. M., Roberts, M. H. T., Szabadi, E.: 1973b., Kinetics of the release of noradrenaline from micropipettes; interaction between ejecting and retaining currents, Brit. J. Pharmacol. 49: 667–677.

    Google Scholar 

  • Brooks, V. B., Curtis, D. R., Eccles, J. C.: 1957, The action of tetanus on the inhibition of motor neurones, J. Physiol. 135: 655–672.

    PubMed  Google Scholar 

  • Bunney, B. S., Walters, J. R., Roth, R. H., Aghajanian, G. K.: 1973. Dopaminergic neurons: Effects of antipsychotic drugs and amphetamine on single cell activity, J. Pharmacol. Exp. Ther. 185: 560–571.

    PubMed  Google Scholar 

  • Caldwell, P. C., Lea, T. J.: 1973. Use of intracellular glass scintillator for the continuous measurement of the uptake of 14C-labelled glycine into squid giant axons, J. Physiol. 232: 4–5 P.

    Google Scholar 

  • Caldwell, P. C., Hodgkin, A. L., Keynes, R. D., Shaw, T. I.: 1960. The effects of injecting “energy-rich” phosphate compounds on the active transport of ions in the giant axons of Loligo, J. Physiol. 152: 561–590.

    PubMed  Google Scholar 

  • Carslaw, H. S., Jaeger, J. C.: 1959. Conduction of Heat in Solids, 2nd ed., Oxford University Press, Oxford.

    Google Scholar 

  • Chambers, R. W., Kopac, M. J.: 1950. in: Handbook of Microscopical Technique, 3rd ed., pp. 492–543, Harper, New York.

    Google Scholar 

  • Clarke, G., Hill, R. G., Simmonds, M. A.: 1973. Microiontophoresic release of drugs from micropipettes: Use of 24Na as a model, Brit. J. Pharmacol. 48: 156–161.

    Google Scholar 

  • Coceani, F., Viti, A.: 1972. The release of prostaglandine EI from micropipettes in vitro, Brain Res. 45: 469–477.

    Article  PubMed  Google Scholar 

  • Crank, J.: 1957. The Mathematics of Diffusion, Oxford University Press, Oxford.

    Google Scholar 

  • Curtis, D. R.: 1964. Microelectrophoresis, in: Physical Techniques in Biological Research, Vol. V: Electrophysiological Methods, Part A ( W. L. Natsuk, ed.), pp. 144–190, Academic Press, New York.

    Google Scholar 

  • Curtis, D. R., Felix, D.: 1971. The effect of bicuculline upon synaptic inhibition in the cerebral and cerebellar cortices of the cat, Brain Res. 34: 301–321.

    Article  PubMed  Google Scholar 

  • Curtis, D. R., Perrin, D. D., Watkins, J. C.: 1960. The excitation of spinal neurones by the iontophoretic application of agents which cheolate calcium, J. Neurochem. 6: 1–20.

    Article  PubMed  Google Scholar 

  • Curtis, D. R., Duggan, A. W., Johnston, G. A. R.: 1970. The inactivation of extracellularly administered amino acids in the feline spinal cord, Exp. Brain Res. 10: 447–462.

    Article  PubMed  Google Scholar 

  • Davies, J. T., Rideal, E. K.: 1961. Interfacial Phenomenar. Academic Press, New York.

    Google Scholar 

  • Del Castillo, J., Katz, B.: 1955. On the localization of acetylcholine receptors, J. Physiol. 128: 157–181.

    Google Scholar 

  • De Robertis, E., Gerschenfeld, H. F.: 1961. Submicroscopic morphology and function of glial cells, Int. Rev. Neurobiol. 3: 1–65.

    Article  Google Scholar 

  • Eccles, J. C., Jaeger, J. C.: 1957. The relationships between the mode of operation and the dimensions of the junctional regions at synapses and motor end-organs, Proc. Roy. Soc. Lond. Ser. B 148: 38.

    Article  Google Scholar 

  • Firth, D. R., De Felice, L. J.: 1971. Electrical resistance and volume flow in glass microelectrodes, Can. J. Physiol. Pharmacol. 49: 436–447.

    Article  PubMed  Google Scholar 

  • Gent, J. P., Morgan, R., Wolstencraft, J. H.: 1974. Determination of the relative potency of two excitant amino acids, Neuropharmacology 13: 441–447.

    Article  PubMed  Google Scholar 

  • Globus, A., Lux, H. D., Schubert, P.: 1968. Somadendritic spread of intracellular injected tritiated glycine in cat spinal motor neurones, Brain Res. 11: 440–445.

    Article  PubMed  Google Scholar 

  • Godfraind, J. M., Pumain, R.: 1972. Cyclic AMP and noradrenaline iontophoretic release on rat cerebellar Pukinje neurons, Arch. Int. Pharmacodyn. Ther. 196: 131–132.

    PubMed  Google Scholar 

  • Gottesfeld, Z., Kelly, J. S., Renaud, L. P.: 1972. The in vivo neuropharmacology of amino-oxyacetic acid in the cerebral cortex of the cat, Brain Res. 42: 319–335.

    Article  PubMed  Google Scholar 

  • Gough, D. A., Andrade, J. D.: 1973. Enzyme electrodes, Science 180: 380–384.

    Article  PubMed  Google Scholar 

  • Grundfest, H., Kao, L. Y., Altamirano, M.: 1954, Bioelectric effects of ions microinjected into the giant axon of Loligo, J. Gen. Physiol. 38: 245–282.

    Article  PubMed  Google Scholar 

  • Haigler, H. J., Aghajanian, G. K.: 1974. Lysergic acid diethylamide and serotin: A comparison of effects of serotinergic neurons and neurons receiving on serotonergic input, J. Pharmacol. Exp. Ther. 188: 688–699.

    PubMed  Google Scholar 

  • Herz, A., Zieglgänsberger, W., Färber, G.: 1969. Microelectrophoretic studies concerning the spread of glutamic acid and GAB A in brain tissue, Exp. Brain Res. 9: 221–235.

    Article  PubMed  Google Scholar 

  • Hoffer, B. J., Neff, N. H., Siggins, G. R.: 1971. Microiontophoretic release of norepinephrine from micropipettes, Neuropharmacology 10: 175–180.

    Article  PubMed  Google Scholar 

  • Iversen, L. L.: 1971. Role of transmitter uptake mechanisms in synaptic transmission, Brit. J. Pharmacol. 41: 571–591.

    Google Scholar 

  • Jaeger, J. C.: 1965. Diffusion from constrictions, in: Studies in Physiology, Presented to John C. Eccles ( D. R. Curtis, A. K. Mclntyre, eds.), pp. 106–117, Springer, New York.

    Google Scholar 

  • Katz, B., Miledi, R.: 1972. The statistical return of the acetycholine potential and its molecular components, J. Physiol. 224: 665–669.

    PubMed  Google Scholar 

  • Katz, B., Miledi, R.: 1973. The characteristics of “end-plate-noise” produced by different depolarizing drugs, J. Physiol. 230: 707–717.

    PubMed  Google Scholar 

  • Kelly, J. S., Renaud, L. P.: 1974. Physiological identification of inhibitory interneurones in the feline pericuneate cortex, Neuropharmacology 13: 463–474.

    Article  PubMed  Google Scholar 

  • Kelly, J. S., Simmonds, M. A., Straughan, D. W.: 1975. Microelectrode techniques, in: Methods in Brain Research ( P. B. Bradley, ed.). pp. 333–377. Wiley, New York.

    Google Scholar 

  • Keynes, R. D.: 1964. Addendum: Microinjection, in: Physical Techniques in Biological Research, Vol. V: Electrophysiological Methods, Part A ( W. L. Natsuk, ed.). pp. 183–189. Academic Press, New York.

    Google Scholar 

  • Kopac, M. J.: 1964. Micromanipulators: Principles of design, operation and application, in: Physical Techniques in Biological Research, Vol. V: Electrophysiological Methods, Part A ( W. L. Natsuk, ed.). pp. 191–233. Academic Press, New York.

    Google Scholar 

  • Kriz, N., Sykovä, E., Ujec, E., Vjklicky, L. L.: 1974. Changes of extracellular potassium concentration induced by neural activity in the spinal cord of the cat, J. Physiol. 238: 1–15.

    PubMed  Google Scholar 

  • Krnjevic, K.: 1972. Microiontophoresis, in: Methods in Neurochemistry ( M. Dekker, ed.), Pergamon Press, New York.

    Google Scholar 

  • Krnjevic, K., Lisiewicz, A.: 1972. Injection of calcium ions into spinal motorneurones, J. Physiol. 225: 363–390.

    PubMed  Google Scholar 

  • Krnjevic, K., Miledi, R.: 1958. Acetylcholine in mammalian neuromuscular transmission, Nature 182: 805–806.

    Article  PubMed  Google Scholar 

  • Krnjevic, K., Morris, M. E.: 1972. Extracellular K+ activity and slow potential changes in spinal cord and medulla, Can. J. Physiol. Pharmacol. 50: 1214–1217.

    Article  PubMed  Google Scholar 

  • Krnjevic, K., Morris, M. E.: 1974. An excitatory action of substance P on cuneate neurones, Can. J. Physiol. Pharmacol. 52: 736–744.

    Article  PubMed  Google Scholar 

  • Krnjevic, K., Phillis, J. W.: 1963. Iontophoretic studies in neurones in the mammalian cerebral cortex, J. Physiol. 165: 274–304.

    PubMed  Google Scholar 

  • Krnjevic, K., Whittaker, V. P.: 1965. Excitation and depression of cortical neurones by brain fractions released from micropipettes, J. Physiol. 179: 298–322.

    PubMed  Google Scholar 

  • Krnjevic, K., Laverty, R., Sharman, D. F.: 1963a. Iontophoretic release of adrenaline, noradrenaline and 5-hydroxytryptamine from micropipettes, Brit. J. Pharmacol. Chemother. 20: 491–496.

    Google Scholar 

  • Krnjevic, K., Mitchell, J. F., Szerb, J. C.: 1963b. Determination of iontophoretic release of acetylcholine from micropipettes, J. Physiol. 165: 421–436.

    PubMed  Google Scholar 

  • Lake, N., Jordan, L. M.: 1974. Failure to confirm cyclic AMP as second messenger for norepinephrine in rat cerebellum, Science 183: 663–664.

    Article  PubMed  Google Scholar 

  • Lavallee, M.: 1964. Intracellular pH of rat atria muscle fibres measured by glass micropipette electrodes, Circ. Res. 15: 185–193.

    PubMed  Google Scholar 

  • Mccreery, R. L., Dreiling, R., Adams, R. N.: 1974. Voltammetry in brain tissue: Quantitative studies of drug interactions, Brain Res. 73: 23–33.

    Article  PubMed  Google Scholar 

  • Morgan, R., Vrbova, G., Wolstencroft, J. H.: 1972. Correlation between the retinal input to lateral geniculate neurones and their relative response to glutamate and aspartate, J. Physiol. 224–241 P.

    Google Scholar 

  • Neame, K. D., Richards, T. G.: 1972. Elementary Kinetics of Membrane Carrier Transport, Blackwell, Oxford.

    Google Scholar 

  • Obata, K., Takeda, K., Shinozaki, H.: 1970. Electrophoretic release of γ-aminobutyric acid and glutamic acid from micropipettes, Int. J. Neuropharmacol. 9: 191–194.

    Article  Google Scholar 

  • Pappenheimer, J. R.: 1953. Passage of molecules through capillary walls, Physiol. Rev. 33: 387–423.

    PubMed  Google Scholar 

  • Paton, W. D. M., Waud, D. R.: 1964. A quantitative investigation of the relationship between rate of access of a drug to a receptor and the rate of onset or offset of action, Arch. Exp. Pathol. Pharmacol. 248: 124–143.

    Article  Google Scholar 

  • Prince, D. A., Lux, H. D., Neher, E.: 1973. Measurement of extracellular potassium activity in cat cortex, Brain Res. 50: 489–495.

    Article  PubMed  Google Scholar 

  • Ritchie, J. M., Greengard, P.: 1966. On the mode of action of local anaesthetic, Ann. Rev. Pharmacol. 6: 405–430.

    Article  PubMed  Google Scholar 

  • Rubio, R., Zubieta, G.: 1961. The variation of the electrical resistance of micro-electrodes during the flow of current, Acta Physiol. Latino-Am. 11: 91–94.

    Google Scholar 

  • Rutgers, A. J.: 1940. Streaming potentials and surface conductance, Trans. Faraday Soc. 36: 69–80.

    Article  Google Scholar 

  • Schanne, O. F., Kawata, H., Schafer, B., Lavallee, M.: 1966, A study of the electrical resistance of the frog sartorius muscle. J. Gen. Physiol. 49: 897–912.

    Article  PubMed  Google Scholar 

  • Schon, F., Kelly, J. S.: 1974. Autoradiographic localization of ß-GABA and (3H)glutamate over satellite glial cells, Brain Res. 66: 275–288.

    Article  Google Scholar 

  • Schubert, P., Kreutzberg, G. W., Lux, H. D.: 1972. Use of microelectrophoresis in the autoradiographic demonstration of fiber projections, Brain Res. 39: 274–277.

    Article  PubMed  Google Scholar 

  • Segal, M., Bloom, F. E.: 1974. The action of norepinephrine in the rat hippocampus. I. Iontophoretic study, Brain Res. 72: 79–97.

    Article  PubMed  Google Scholar 

  • Shoemaker, W. J., Balentine, L., Hoffer, B. J., Siggins, G. R., Henrikson, S., Bloom, F. E.: 1974. in press, quoted from Bloom etal, 1974.

    Google Scholar 

  • Thomas, R. C.: 1974. Intracellular pH of snail neurones measured with a new pH-sensitive glass microelectrode, J. Physiol. 238: 159–180.

    PubMed  Google Scholar 

  • Thron, C. D.: 1974. Linearity and super imposition in pharmacokinetics, Pharmacol. Rev. 26: 3–31.

    PubMed  Google Scholar 

  • Walker, J. L.: 1971. Ion specific liquid ion exchanger microelectrodes, Anal. Chem. 43: 89–92A.

    Article  Google Scholar 

  • Waud, D. R.: 1968. On diffusion from a point source, J. Pharmacol. Exp. Ther. 159: 123–128.

    PubMed  Google Scholar 

  • Weiderhielm, C. A., Woodbury, J. W., Kirk, S., Rushmer, R. F.: 1964. Pulsatile pressures in the microcirculation of frog’s mesentery, Am. J. Physiol. 207: 173–176.

    Google Scholar 

  • Werman, R., Davidoff, R. A., Aprison, M. H.: 1966. The inhibitory action of cystathion, Life Sci. 5: 1431–1440.

    Article  PubMed  Google Scholar 

  • Zieglgansberger, W., Herz, A., Teschenacher, H.: 1969. Electrophoretic release of tritium labelled glutamic acid from micropipettes in vitro, Brain Res. 15: 298–300.

    Article  PubMed  Google Scholar 

  • Zieglgansberger, W., Sothmann, G., Herz, A.: 1974. Iontophoretic release of substances from micropipettes in vitro, Neuropharmacology 13: 417–422.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Kelly, J.S. (1975). Microiontophoretic Application of Drugs onto Single Neurons. In: Iversen, L.L., Iversen, S.D., Snyder, S.H. (eds) Principles of Receptor Research. Handbook of Psychopharmacology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3168-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3168-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3170-4

  • Online ISBN: 978-1-4684-3168-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics