Skip to main content

Defect Equilibria in Solids

  • Chapter
  • First Online:
The Chemical Structure of Solids

Part of the book series: Treatise on Solid State Chemistry ((TSSC,volume 1))

Abstract

An ideal crystal consists of a perfectly ordered arrangement of atoms, ions, or molecules. However, in any real crystal, at temperatures above absolute zero, there are always imperfections or defects in the crystal lattice, as discussed in Chapter 5. This chapter will deal with defects whose distribution and concentration in the lattice are governed by the laws of thermodynamics.† In pure crystals such defects are called native defects. The existence of native defects in a lattice arises from a tendency of a crystal to increase its entropy or degree of disorder. As defects are introduced into a crystal, the entropy ΔS will increase. The number of defects will be limited, however, by the enthalpy necessary to form the defects, ΔH. The actual number of defects present at any temperature is that which gives a minimum in the free energy G of the crystal according to the relation

$$G = G^* + \Delta H - T\Delta S = G^* + N_D \Delta H_D - TN_D \Delta S_u - T\Delta S_c (N_D )$$
((1))

where G* is the free energy of the theoretically perfect crystal, N D is the number of defects, ΔH D is the enthalpy change per defect, ΔS V is the change in vibrational entropy per defect, and ΔS c(N D) is the change in configurational entropy, which is a function of the number of defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. J. Burton, Vacancy-formation entropy in cubic metals, Phys. Rev.B5, 2948–2957 (1972).

    Google Scholar 

  2. A. C. Damask and G. J. Dienes, Point Defects in Metals, Gordon and Breach, New York (1963).

    Google Scholar 

  3. R. A. Johnson and W. D. Wilson, in Interatomic Potentials and Simulation of Lattice Defects (P. C. Gehlen, J. R. Beeler, and R. I. Jaffee, eds.), pp. 301–319, Plenum Press, New York (1972).

    Google Scholar 

  4. K. H. Bennemann, New methods for treating lattice defects in covalent crystals, Phys. Rev.137A, 1497–1514 (1965).

    Google Scholar 

  5. R. A. Swalin, Theoretical calculation of the enthalpies and entropies of diffusion and vacancy formation in semiconductors, J. Phys. Chem. Solids18, 290–296 (1961).

    CAS  Google Scholar 

  6. W. L. Korst and J. C. Warf, Rare earth hydrogen systems. I. Structural and thermo-dynamic properties, Inorg. Chem.5, 1719–1726 (1966).

    CAS  Google Scholar 

  7. G. G. Libowitz and J. B. Lightstone, in Proc. 6th Rare Earth Research Conf., Gatlinburg, Tenn., Air Force Report AFOSR 67-1214, pp. 132-144 (1967).

    Google Scholar 

  8. M. D. Banus and T. B. Reed, in The Chemistry of Extended Defects in Non-Metallic Solids (L. Eyring and M. O’Keeffe, eds.), pp. 488–522, North-Holland, Amsterdam (1970).

    Google Scholar 

  9. G. G. Libowitz and T. R. P. Gibb, High pressure dissociation studies of the uranium hydrogen system, J. Phys. Chem.61, 793–795 (1957).

    CAS  Google Scholar 

  10. J. P. Pemsler and E. J. Rapperport, Thermodynamic properties of solid Au-Zn alloys by atomic absorption spectroscopy, Met. Trans.2, 79–84 (1971).

    CAS  Google Scholar 

  11. G. G. Libowitz, Point defects and thermodynamic properties in CsCl-type intermetallic compounds, Met. Trans.2, 85–93 (1971).

    CAS  Google Scholar 

  12. B. Fisher and D. S. Tannhauser, Electrical properties of cobalt monoxide, J. Chem. Phys.44, 1663–1672 (1966).

    CAS  Google Scholar 

  13. T. C. Harman, B. Paris, S. E. Miller, and H. L. Goering, Preparation and some physical properties of Bi2Te3, Sb2Te3, and As2Te3, J. Phys. Chem. Solids2, 181–190 (1957).

    CAS  Google Scholar 

  14. G. R. Miller and C. Li, Evidence for the existence of antistructure defects in bismuth telluride by density measurements, J. Phys. Chem. Solids26, 173–177 (1965).

    CAS  Google Scholar 

  15. R. F. Brebrick, Homogeneity ranges and Te2-pressure along the three-phase curves for Bi2Te3(c) and a 55–58 at % Te Peritectic Phase, J. Phys. Chem. Solids30, 719–731 (1969).

    CAS  Google Scholar 

  16. R. W. Vest, N. M. Tallan, and W. C. Tripp, Electrical properties and defect structure of zirconia: I. Monoclinic phase, J. Am. Ceram. Soc.47, 635–640 (1964).

    CAS  Google Scholar 

  17. G. Brouwer, A general asymptotic solution of reaction equations common in solid state chemistry, Philips Res. Rep.9, 366–376 (1954).

    CAS  Google Scholar 

  18. F. A. Kröger and H. J. Vink, in Solid State Physics, Advances in Research and Applications (F. Seitz and D. Turnbull, eds.), pp. 307–435, Academic Press, New York (1956).

    Google Scholar 

  19. F. A. Kröger, The Chemistry of Imperfect Crystals, North-Holland, Amsterdam (1964).

    Google Scholar 

  20. W. Van Gool, Principles of Defect Chemistry of Crystalline Solids, Academic Press, New York (1966).

    Google Scholar 

  21. F. W. G. Rose, On the mass action laws in degenerate semiconductors, Proc. Phys. Soc. London71, 699–701 (1958).

    CAS  Google Scholar 

  22. A. J. Rosenberg, Activity coefficients of electrons and holes at high concentrations, J. Chem. Phys.33, 665–667 (1960).

    CAS  Google Scholar 

  23. E. A. Guggenheim, Mixtures, Oxford Univ. Press, London (1952).

    Google Scholar 

  24. C. E. Messer and G. W. Hung, Dissociation pressures in the system LaH2-LaH3, 250-350°C, J. Phys. Chem.72, 3958–3962 (1968).

    CAS  Google Scholar 

  25. J. B. Lightstone and G. G. Libowitz, Interaction between point defects in nonstoichiometric compounds, J. Phys. Chem. Solids30, 1025–1036 (1969).

    CAS  Google Scholar 

  26. J. S. Anderson, The conditions of equilibrium of nonstoichiometric chemical compounds, Proc. Roy. Soc. (London) A185, 69–89 (1946).

    Google Scholar 

  27. J. C. Ward, Interaction between cation vacancies in pyrrhotite, Solid State Commun.9, 357–359 (1971).

    CAS  Google Scholar 

  28. M. Hoch, Order-disorder reactions in α-Ti(O) and TiO, J. Phys. Chem. Solids24, 157–159 (1963).

    CAS  Google Scholar 

  29. G. G. Libowitz, Nonstoichiometry and lattice defects in transition metal hydrides, J. Appl. Phys.33, 399–405 (1962).

    CAS  Google Scholar 

  30. G. G. Libowitz and J. G. Pack, The gadolinium-hydrogen system at elevated temperatures. Vacancy interactions in gadolinium dihydride, J. Phys. Chem.73, 2352–2356 (1969).

    CAS  Google Scholar 

  31. M. Hoch, in Phase Stability in Metals and Alloys (P. Rudman, J. Stringer, and R. I. Jaffee, eds.), pp. 419–429, McGraw-Hill, New York (1967).

    Google Scholar 

  32. G. G. Libowitz, Nonstoichiometry in metal hydrides, Advances in Chem. Series No. 39, pp. 74–86 (1963).

    CAS  Google Scholar 

  33. A. L. G. Rees, Statistical mechanics of two-component interstitial solid solutions, Trans. Faraday Soc.50, 335–342 (1954).

    CAS  Google Scholar 

  34. W. A. Oates, J. A. Lambert, and P. T. Gallagher, Monte Carlo calculations of configurational entropies in interstitial solid solutions, Trans. Met. Soc. AIME245, 47–54 (1969).

    CAS  Google Scholar 

  35. A. B. Lidiard, Vacancy pairs in ionic crystals, Phys. Rev.112, 54–55 (1958).

    CAS  Google Scholar 

  36. K. P. Chik, D. Schumacher, and A. Seeger, in Phase Stabilities in Metals and Alloys (P. Rudman, J. Stringer, and R. I. Jaffee, eds.), pp. 449–467, McGraw-Hill, New York (1967).

    Google Scholar 

  37. H. Reiss and C. S. Fuller, Influence of holes and electrons on the solubility of lithium in boron-doped silicon, Trans. Met. Soc. AIME206, 276–282 (1956).

    Google Scholar 

  38. R. Parker and M. S. Smith, The solubility of nickel in nickel ferrite, J. Phys. Chem. Solids21, 76–80 (1961).

    CAS  Google Scholar 

  39. R. Adams, P. Russo, R. Arnott and A. Wold, Preparation and properties of the systems CuFeS2.00−x and Cu1.00−xFe1.00+xS2.00−y, Met. Res. Bull.7, 93–100 (1972).

    CAS  Google Scholar 

  40. Y. D. Tretyakov and R. A. Rapp, Nonstoichiometric and defect structures in pure nickel oxide and lithium ferrite, Trans. Met. Soc. AIME245, 1235–1241 (1969).

    CAS  Google Scholar 

  41. H. Schmalzried, Point defects in ternary ionic crystals, in Progress in Solid State Chemistry, Vol. 2, pp. 265–303, Pergamon Press (1965).

    CAS  Google Scholar 

  42. W. L. George and R. E. Grace, Formation of point defects in calcium titanate, J. Phys. Chem. Solids30, 881–887 (1969).

    CAS  Google Scholar 

  43. L. Eyring and M. O’Keeffe (eds.), The Chemistry of Extended Defects in Non-Metallic Solids, North-Holland, Amsterdam (1970).

    Google Scholar 

  44. B. T. M. Willis, Positions of the oxygen atoms in UO2.13, Nature197, 755–756 (1963).

    CAS  Google Scholar 

  45. W. L. Roth, Defects in the crystal and magnetic structure of ferrous oxide, Acta Cryst.13, 140–149 (1960).

    CAS  Google Scholar 

  46. P. Kofstad and A.Z. Hed, Defect structure model for wustite, J. Electrochem. Soc.115, 102–105 (1968).

    CAS  Google Scholar 

  47. G. G. Libowitz, in Mass Transport in Oxides (J. B. Wachtman and A. D. Franklin, eds.), pp. 109-118, Natl. Bur. Std. Special Publ. 296 (1968).

    Google Scholar 

  48. F. Koch and J. B. Cohen, The defect structure of Fe1−x O, Acta Cryst.B25, 275–287 (1969).

    Google Scholar 

  49. R. A. Huggins and M. L. Huggins, Structural defect equilibria in vitreous silica and dilute silicates, J. Solid State Chem.2, 385–395 (1970).

    CAS  Google Scholar 

  50. J. S. Anderson, in Problems of Nonstoichiometry (A. Rabenau, ed.), pp. 1–76, North-Holland, Amsterdam (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Bell Telephone Laboratories, Incorporated

About this chapter

Cite this chapter

Libowitz, G.G. (1973). Defect Equilibria in Solids. In: Hannay, N.B. (eds) The Chemical Structure of Solids. Treatise on Solid State Chemistry, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-2661-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2661-8_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-2663-2

  • Online ISBN: 978-1-4684-2661-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics