Skip to main content
  • 193 Accesses

Abstract

The measurement of time, or rather of time intervals, plays an important role in a variety of experimental methods used in nuclear physics and in its applications in chemistry. The function of a timing circuit is to determine the length of a time interval that is specified by two electric pulses, a “start” and a “stop” pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References and Notes

  1. E. Kowalski, Nuclear Electronics, Springer, Berlin (1970). A state-of-the-art book containing many references to original articles. See also L. J. Herbst, Electronics for Nuclear Particle Analysis, Oxford University Press, Oxford (1970).

    Google Scholar 

  2. R. E. Bell, Comparison of leading-edge and crossover timing in coincidence measurements, Nucl Instr. Meth. 42:211 (1966).

    Article  Google Scholar 

  3. P. R. Orman, A synchronizing discriminator for scintillation counter pulses, Nucl. Instr. Meth. 21:121 (1963). Describes zero-crossover detection with a tunnel diode. See also D. L. Wieber and H. W. Lefevre, IEEE Trans. Nucl. Sci. NS-13:406 (1966).

    Article  Google Scholar 

  4. M. Moszynski and B. Bengtson, Application of a pulse shape selection method to a true coaxial Ge(Li) detector for measurements of nanoseconds half-lives, Nucl. Instr. Meth. 80:233 (1970).

    Article  Google Scholar 

  5. The “Start-Stop” Type TAC is more fully discussed in E. Kowalski, Nuclear Electronics, Springer, Berlin (1970)250.

    Google Scholar 

  6. The “Overlap” type TAC is treated in E. Kowalski, Nuclear Electronics, Springer, Berlin (1970)256.

    Google Scholar 

  7. H. W. Lefevre and J. T. Russell, Vernier chronotron, Rev. Sci. Instr. 30:159 (1959).

    Article  ADS  Google Scholar 

  8. A system with relative stabilization is described in P. J. Kindlmann and J. Sunderland, Phase stabilized vernier chronotron, Rev. Sci. Instr. 37:445 (1966).

    Article  ADS  Google Scholar 

  9. J. Aveynier and R. van Zurk, Vernier chronotron reflex, Nucl. Instr. Meth. 78:161 (1970).

    Article  Google Scholar 

  10. I. M. H. Pagden and J. C. Sutherland, Resolving power of gamma ray coincidence spectrometer using lithium drifted germanium detectors and its application to multiple radioisotope analysis, Anal. Chem. 42:383 (1970). This article proposes Ge(Li) coincidence spectrometry. Low-level coincidence spectroscopy with two NaI(Tl) detectors equipped with anti- Compton shields is discussed in Ref. 11.

    Article  Google Scholar 

  11. J. B. Birks, The Theory and Practice of Scintillation Counting, Pergamon Press, Oxford, page 495 (1964). This is the world’s standard on scintillation counting.

    Google Scholar 

  12. N. A. Wogman, R. W. Perkins, and J. H. Kaye, An all sodium iodide anticoincidence shielded multidimensional gamma-ray spectrometer for low-activity samples, Nucl. Instr. Meth., 74:197 (1969).

    Article  Google Scholar 

  13. Treats the properties of a heavily shielded (60 m of concrete) double NaI(Tl) detector system with anti-Compton shields on both detectors. A similar system is described in B. A. Euler, D. F. Covell, and S. Yamamoto, A Comptonsuppressed coincidence gamma-ray scintillation spectrometer with large NaI(Tl) crystals, Nucl. Instr. Meth., 72:143(1969). See also (13).

    Article  Google Scholar 

  14. J. B. Birks, The Theory and Practice of Scintillation Counting, Pergamon Press, Oxford, page 500 (1964), and references cited there.

    Google Scholar 

  15. J. E. Draper and G. L. Smith, Small split NaI(Tl) annulus-Ge(Li) spectrometer for coincidence-anticoincidence with in-beam gammas, Nucl. Instr. Meth., 70:134 (1969). Describes a combined anti-Compton and pair spectrometer in which the center detector consists of a small Ge(Li) detector (0.5 cm3).

    Article  Google Scholar 

  16. J. B. Birks, The Theory and Practice of Scintillation Counting, Pergamon Press, Oxford, page 502 (1964), and references cited there.

    Google Scholar 

  17. J. Kantele and P. Suominen, A Simple summing Compton Ge(Li) spectrometer, Nucl. Instr. Meth., 56:351 (1967).

    Article  Google Scholar 

  18. Two Ge(Li) detectors are used. The second detector is shielded from the source and detects the scattered quanta from the first detector. See also C. Broude et al., Nucl. Instr. Meth., 69:292 (1969).

    Article  Google Scholar 

  19. A. M. Hoogenboom, A new method in gamma-ray spectroscopy: A two crystal scintillation spectrometer with improved resolution, Nucl. Instr. Meth., 3:57 (1958). This is the original article on the sum-coincidence method.

    Google Scholar 

  20. See for example, D. E. Watt and D. Ramsden, High Sensitivity Counting Techniques, Pergamon Press, Oxford (1964).

    Google Scholar 

  21. This monograph treats the subject broadly with many references. For high-sensitivity γ-ray detection, see also (11) and S. Tanaka, K. Sakamoto, and J. Takagi, An extremely low-level gamma-ray spectrometer, Nucl. Instr. Meth., 56:319 (1967).

    Article  Google Scholar 

  22. D. E. Watt and D. Ramsden, High Sensitivity Counting Techniques, Pergamon Press, Oxford (1964), 155.

    Google Scholar 

  23. J. B. Birks, The Theory and Practice of Scintillation Counting, Pergamon Press, Oxford, (1964), 268.

    Google Scholar 

  24. J. B. Birks, The Theory and Practice of Scintillation Counting, Pergamon Press, Oxford, (1964), 397.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this chapter

Cite this chapter

Hoogenboom, J.A.M. (1973). Timing Circuits. In: Krugers, J. (eds) Instrumentation in Applied Nuclear Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1953-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1953-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1955-9

  • Online ISBN: 978-1-4684-1953-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics