Skip to main content

New Aspects of Comparative Peripheral Auditory Physiology

  • Chapter
Auditory Pathway

Abstract

Although the study of the auditory system of nonmammals has a long history, it has only been in the last ten years that there has been a greatly increased interest in comparative studies. There are two main reasons for this upsurge in interest. Firstly, the hearing organs of amphibians, reptiles and birds display a structural variety not found in the cochlea of mammals, offering the chance to investigate structure- function relationships without interfering with the normal structure. Secondly, it has been recognized that the sensory papillae of many nonmammals are mechanically and physiologically relatively robust, which allows extensive and detailed investigation of hair-cell function in isolated organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Crawford, A. C. and Fettiplace, R. 1980, The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle, J. Physiol., 306:79–125.

    PubMed  CAS  Google Scholar 

  • Crawford, A. C. and Fettiplace, R., 1981, An electrical tuning mechanism in turtle cochlear hair cells, J. Physiol., 312:377–412.

    PubMed  CAS  Google Scholar 

  • Eatock, R. A. and Manley, G. A., 1976, Temperature effects on single auditory nerve fiber responses, J. Acoust. Soc. Amer., 60:S80.

    Article  Google Scholar 

  • Eatock, R. A. and Manley, G. A., 1981, Auditory nerve fibre activity in the tokay gecko: II, temperature effect on timing, J. Comp. Physiol. A, 142:219–226.

    Article  Google Scholar 

  • Gleich, O. and Manley, G. A., 1988, Quantitative morphological analysis of the sensory epithelium of the starling and pigeon basilar papilla, (Submitted).

    Google Scholar 

  • Gross, N. B. and Anderson, D. J., 1976, Single unit responses recorded from the first order neuron of the pigeon auditory system, Brain Res., 101:209–222.

    Article  PubMed  CAS  Google Scholar 

  • Gummer, A. W. and Klinke, R., 1983, Influence of temperature on tuning of primary-like units in the guinea pig cochlear nucleus, Hearing Res., 12:367–380.

    Article  CAS  Google Scholar 

  • Klinke, R. and Schermuly, L., 1986, Inner ear mechanics of the crocodilian and avian basilar papillae in comparison to neuronal data, Hearing Res., 22:183–184.

    Article  Google Scholar 

  • Klinke, R. and Smolders, J., 1984, Hearing mechanisms in caiman and pigeon, in: “Comparative Physiology of Sensory Systems”, L. Bolis, R. D. Keynes, S. H. P. Maddrell, eds., Cambridge Univ. Press, 195–211.

    Google Scholar 

  • Köppl, C. and Gleich, O., 1987, Cobalt labelling of single primary auditory neurones: an alternative to HRP, (Submitted).

    Google Scholar 

  • Leake, P. A., 1977, SEM observations of the cochlear duct in Caiman crocodilus, Scan. Electr. Micros., 2:437–444.

    Google Scholar 

  • Lieberman, M. C., 1982, The cochlear frequency map for the cat: Labeling auditory-nerve fibers of known characteristic frequency, J. Acoust. Soc. Amer., 72:1441–1449.

    Article  Google Scholar 

  • Manley, G. A., 1979, Preferred intervals in the spontaneous activity of primary auditory neurones, Naturwiss. 66:582.

    Article  PubMed  CAS  Google Scholar 

  • Manley, G. A., 1981, A review of the auditory physiology of the reptiles, Progr. Sens. Physiol., 2:49–134.

    Article  Google Scholar 

  • Manley, G. A., 1986, The evolution of the mechanisms of frequency selectivity in vertebrates, in: “Auditory Frequency Selectivity”, B. C. J. Moore, R. D. Patterson, eds., Plenum Press, New York, London, 63–72.

    Google Scholar 

  • Manley, G. A. and Gleich, O., 1984, Avian primary auditory neurones: the relationship between characteristic frequency and preferred intervals, Naturwissenschaften, 71:592–594.

    Article  PubMed  CAS  Google Scholar 

  • Manley, G. A., Gleich, O., Leppelsack, H.-J. and Oeckinghaus, H., 1985, Activity patterns of cochlear ganglion neurones in the starling, J. Comp. Physiol. A., 157:161–181.

    Article  PubMed  CAS  Google Scholar 

  • Manley, G. A., Brix, J. and Kaiser, A., 1987a, Developmental stability of the tonotopic organization of the chick’s basilar papilla, Science, 237:655–656.

    Article  PubMed  CAS  Google Scholar 

  • Manley, G. A., Schulze, M. and Oeckinghaus, H., 1987b, Otoacoustic emissions in a song bird, Hearing Res., 26:257–266.

    Article  CAS  Google Scholar 

  • Manley, G. A., Yates, G. and Köppl, C., 1987c, Auditory peripheral tuning: evidence for a simple resonance phenomenon in the lizard Tiliqua, (Submitted)

    Google Scholar 

  • Miller, M. R. and Beck, J., 1988, Auditory hair cell innervational patterns in lizards, (Submitted).

    Google Scholar 

  • Moffat, A. J. M. and Capranica, R. R., 1976, Effects of temperature on the response properties of auditory nerve fibers in the american toad (Bufo americanus), J. Acoust. Soc. Amer., 60:S580.

    Article  Google Scholar 

  • Neely, S. T. and Kim, D. O., 1983, An active cochlear model showing sharp tuning and high sensitivity, Hearing Res., 9:123–130.

    Article  CAS  Google Scholar 

  • Palmer, A. and Wilson, J. P., 1981, Spontaneous evoked emissions in the frog Rana esculenta, J. Physiol., 324:66P.

    Google Scholar 

  • Sachs, M. B., Young, E. D. and Lewis, R. H., 1974, Discharge patterns of single fibers in the pigeon auditory nerve, Brain Res., 70:431–447.

    Article  PubMed  CAS  Google Scholar 

  • Schermuly, L. and Klinke, R., 1985, Change of characteristic frequencies of pigeon primary auditory afferents with temperature, J. Comp. Physiol. A., 156:209–211.

    Article  Google Scholar 

  • Smolders, J. W. T. and Klinke, R., 1984, Effects of temperature on the properties of primary auditory fibres of the spectacled caiman, Caiman crocodilus (L), J. Comp. Physiol., 155:19–30.

    Article  Google Scholar 

  • Smith, C. A., 1985, Inner ear, in: “Form and Function in Birds”, A. S. King, J. McLeland, eds., Vol 3. Academic Press, London, 273–310.

    Google Scholar 

  • Strelioff, D. and Flock, A., 1984, Stiffness of sensory-cell hair bundles in the isolated guinea pig cochlea, Hearing Res., 15:19–28.

    Article  CAS  Google Scholar 

  • Takasaka, T. and Smith, C. A., 1971, The structure and innervation of the pigeon’s basilar papilla, J. Ultrastruct. Res., 35:20–65.

    Article  PubMed  CAS  Google Scholar 

  • Temchin, A. N., 1985, Acoustical reception in birds, in: “Acta XVIII Congressus Internat Ornithol.”, V. D. Ilyichev, V. M. Gavrilov, eds., Vol. 1 Moskow Nauka, 275–282.

    Google Scholar 

  • Turner, R. G., 1987, Neural tuning in the granite spiny lizard, Hearing Res., 26:287–299.

    Article  CAS  Google Scholar 

  • Vater, M., Feng, A. S. and Betz, M., 1985, An HRP-study of the frequency- place map of the horseshoe-bat cochlea: morphological correlates of the sharp tuning to a narrow frequency band, J. Comp. Physiol. A., 157:671–686.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, T. F., Mulroy, M. J., Turner, R. G. and Pike, C. L., 1976, Tuning of single fibres in the cochlear nerve of the alligator lizard: relation to receptor morphology, Brain Res. 115:71–90.

    Article  PubMed  CAS  Google Scholar 

  • Zwislocki, J. J., 1979, Tectorial membrane: a possible sharpening effect on the frequency analysis in the cochlea, Acta Otolaryngol., 87:267–269.

    Article  PubMed  CAS  Google Scholar 

  • Zwislocki, J. J., 1985, Are nonlinearities observed in firing rates of auditory-nerve afferents reflections of a nonlinear coupling between the tectorial membrane and the Organ of Corti?, Hearing Res., 22:217–221.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Manley, G.A., Brix, J., Gleich, O., Kaiser, A., Köppl, C., Yates, G. (1988). New Aspects of Comparative Peripheral Auditory Physiology. In: Syka, J., Masterton, R.B. (eds) Auditory Pathway. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1300-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1300-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1302-1

  • Online ISBN: 978-1-4684-1300-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics