Skip to main content

Spectroscopic Methods for the Study of Local Dynamics in Polyatomic Fluids

  • Chapter
Microscopic Structure and Dynamics of Liquids

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 33))

Abstract

The problem of molecular motions in liquids can be approached in two complementary ways: by molecular dynamics calculations, and by spectroscopic experiments. In molecular dynamics, one considers an assembly of N (typically N = 500) rigid molecules i,assumes intermolecular pair potentials, chooses boundary and initial conditions (i.e. the volume and the energy) and solves numerically the 6N coupled equations of motion. Using these results one can in principle calculate any physical quantity associated with the system (equilibrium as well as time dependent quantities). In practice, however, the method is limited by computer memory and time; in other words, by the fact that (i) the tested volume of sample is always very small (N is always small compared to the number of particles in a real sample) and (ii) the time scale is also relatively small (the number of integration steps is necessarily finite). As a consequence, this method cannot, a priori, be very good to test long range and long time phenomena as described for example, by critical phenomena theory and hydrodynamic theory. The other limitation of the method is the restriction to pair potentials and to classical mechanics. Consequently, important phenomena such as vibrations cannot be included since a quantum description is then required. The main interest of the molecular dynamics method is to give typical results which can be compared to experimental results obtained on real liquids. The molecular dynamics problem is treated in detail by Dr. McDonald elsewhere in this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Molecular Motions in Liquids“, ed. J. Lascombe, D.Reidel Publishing Co. (1974).

    Google Scholar 

  2. S. Chandrasekar, Rev. Mod. Phys. 15, 1 (1943).

    Article  ADS  Google Scholar 

  3. M.C. Wang and G.E. Uhlenbeck, Rev. Mod. Phys. 17, 323 (1954).

    Article  MathSciNet  ADS  Google Scholar 

  4. D.W. Condiffand, J.S. Dahler, J. Chem. Phys. 44, 3988 (1966).

    Article  ADS  Google Scholar 

  5. F. Perrin, J. Phys. Radium 5, 497 (1934); 7, 1 (1936).

    Article  MATH  Google Scholar 

  6. W.H. Furry, Phys. Rev. 107, 7 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. L. Pauling, Phys. Rev. T6; 430 (1930).

    Article  ADS  Google Scholar 

  8. L.D. Favro, Phys. Rev. 119, 53 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. W.T. Huntress, Jr., J. Chem. Phys. 48, 3524 (1968).

    Article  ADS  Google Scholar 

  10. E.N. Ivanov, Sov. Phys. JETP, 18, 1041 (1964).

    Google Scholar 

  11. W.A. Steele, J. Chem. Phys. 38, 2404 (1963).

    Article  ADS  Google Scholar 

  12. J.E. Anderson, J. Chem. Phys. 47, 4879 (1967).

    Article  ADS  Google Scholar 

  13. M. Fixman and K. Rider, J. Chem. Phys. 51, 2425 (1969).

    Article  ADS  Google Scholar 

  14. R.G. Gordon, J. Chem. Phys. 44, 1830 (1966).

    Article  ADS  Google Scholar 

  15. R.E.D. McClung, J. Chem. Phys. 51, 3842 (1969); 57, 5478 (1972); Adv. Molec. Relax. 10, 23 (1977).

    Google Scholar 

  16. P.S. Hubbard, J. Chem. Phys. 52, 563 (1970).

    Article  ADS  Google Scholar 

  17. P.S. Hubbard, Phys. Rev. A, 6, 2421 (1972).

    Article  MathSciNet  ADS  Google Scholar 

  18. D. Frenkel, G.H. Wegdam and J. Van der Eisken, J. Chem. Phys. 57, 2691 (1972).

    Article  ADS  Google Scholar 

  19. D.E. O’Reilly, J. Chem. Phys. 55, 2876 (1971).

    Article  ADS  Google Scholar 

  20. A.G. St. Pierre and W.A. Steele, J. Chem. Phys. 57, 4638 (1972).

    Article  ADS  Google Scholar 

  21. D. Kivelson and T. Keyes, J. Chem. Phys. 57, 4599 (1972).

    Article  ADS  Google Scholar 

  22. R.I. Cukier, J. Chem. Phys. 60, 734 (1974).

    Article  ADS  Google Scholar 

  23. K.E. Larsson, J. Chem. Phys. 59, 4612 (1973).

    Article  ADS  Google Scholar 

  24. C. Thibaudier and F. Volino, Molec. Phys. 26, 1281 (1973); 30, 1159 (1975).

    Article  ADS  Google Scholar 

  25. C. Brot and B. Lassier-Govers, Ber. Ges. Phys. Chem. 80, 31 (1976).

    Google Scholar 

  26. J.G. Powles and G. Rickayzen, Molec. Phys. 33, 1207 (1977).

    Article  ADS  Google Scholar 

  27. R.G. Gordon, Adv. in Mag. Resonance, 3, 1 (1968).

    Google Scholar 

  28. C. Brot, in “Molecular Fluids”, 37 (1976) ed. by J. Balian and G. Weill, Gordon and Breach.

    Google Scholar 

  29. J.G. Powles, Ber. Bunsenges. Phys. Chem. 80, 259 (1976).

    Google Scholar 

  30. W.A. Steele, in Advances in Chemical Physics, XXXIV, ed. by

    Google Scholar 

  31. I. Prigogine and S.T. Rice, J. Wiley (1976).

    Google Scholar 

  32. I.I. Gurevitch and L.V. Tarasov,“Low Energy Neutron Physics”, North-Holland (1968).

    Google Scholar 

  33. Thermal Neutron Scattering“, Academic Press (1965) ed. by P.A. Egelstaff.

    Google Scholar 

  34. W. Marshall and S.W. Lovesey,“Theory of Neutron Scattering”, Oxford University Press (1971).

    Google Scholar 

  35. T. Springer, Springer Tracts in Modern Physics, 64 (1972); ref. [1] p. 41 1.

    Google Scholar 

  36. T. Springer, Topics in Current Physics, 3, 255 (1977).

    Article  Google Scholar 

  37. F. Volino and A.J. Dianoux, Proceedings of the EUCHEM Conference on Liquids FRG (April 1976), J. Wiley (1978).

    Google Scholar 

  38. A.J. Leadbetter and R.E. Lechner in “The Plastic Crystalline State”,ed. J.N. Sherwood, J. Wiley (1978).

    Google Scholar 

  39. V.F. Sears, Can. J. of Phys. 44, 1279 (1966); 44, 1299 (1966).

    Google Scholar 

  40. A.J. Dianoux, F. Volino and H. Hervet, Molec. Phys. 30, 1181 (1975).

    Article  ADS  Google Scholar 

  41. A.J. Dianoux and F. Volino, Molec. Phys. 34, 1263 (1977).

    Article  ADS  Google Scholar 

  42. F. Volino and A.J. Dianoux, Molec. Phys. (1978), in print.

    Google Scholar 

  43. A.J. Dianoux, H. Hervet and F. Volino, J. Physique, 38, 809 (1977) and references therein.

    Google Scholar 

  44. A.J. Dianoux and F. Volino, Proceedings of the IAEA Conference Vienna (1977).

    Google Scholar 

  45. H. Hervet, A.J. Dianoux, R.E. Lechner and F. Volino, J. Physique 37, 587 (1976).

    Article  Google Scholar 

  46. F. Volino. A.J. Dianoux and H. Hervet, J. Physique Colloques 37,C3–55(1976).

    Google Scholar 

  47. M.E. Besnard, A.J. Dianoux, P. Lalanne and J.C. Lassègues, J. Physique, 38, 1417 (1977).

    Article  Google Scholar 

  48. M.E. Besnard, A.J. Dianoux, J. Lascombe, J.C. Lassègues and P. Lalanne, Proceedings of the IAEA Conference, Vienna (1977).

    Google Scholar 

  49. Théorie Quantique Relativiste, L. Landau and E. Lifshitz IV, Chap. l, Ed. Mir, Moscow.

    Google Scholar 

  50. B.J. Berne and R. Pecora, “Dynamic Light Scattering” John Wiley (1976).

    Google Scholar 

  51. R.H. Cole, ref. [1], p. 97.

    Google Scholar 

  52. H. Kilp, G. Klages and W. Noerpel, ref. [1], p. 123.

    Google Scholar 

  53. P. Desplanques, E. Constant, R. Fauquembergue, ref.[1], p.133.

    Google Scholar 

  54. J.L. Greffe,J. Goulon, J. Brondeau, J.L.Rivail, ref.[1],p.151.

    Google Scholar 

  55. J. Goulon; J.L. Rivail, J. Chamberlain and G.W. Cantry, ref. [1], p. 163.

    Google Scholar 

  56. R.S. Wilson, ref. [1], p. 172.

    Google Scholar 

  57. J.P. Badiali, H. Cachet, A. Cyrot and J.C. Lestrade, ref. [1], p. 179.

    Google Scholar 

  58. Infrared Physics“, J.T. Houghton and S.D. Smit, Oxford Clarendon Press (1966).

    Google Scholar 

  59. S. Bratos, Y. Guissani and J.C. Leicknam, ref. [1], p. 187.

    Google Scholar 

  60. J. Lascombe, M. Besnard, P.B. Caloine, J. Devaure and M. Perrot, ref. [1], p. 197.

    Google Scholar 

  61. P.C. Van Woerkom, J. de Bleyser and J.C. Leyte, ref. [1], p. 233.

    Google Scholar 

  62. P.J. Perchard, C. Perchard and D. Legay, ref. [1], p. 235.

    Google Scholar 

  63. W.G. Rotschild, ref. [1], p. 247.

    Google Scholar 

  64. J. Vincent-Geisse and C. Dreyfus, ref. [1], p. 294.

    Google Scholar 

  65. J. Soussen-Jacob, J. Vincent-Geisse, C. Alliott, A.M. Size, J.C. Briquet,E. Dervil, J. Loisel and J.P. Pinan-Lucarre, ref. [1], p. 301.

    Google Scholar 

  66. P. Dorval and P. Saumagne, ref. [1], p. 319.

    Google Scholar 

  67. S. Bratos, J. Rios and Y. Guissani, J. Chem. Phys. 52, 439 (1970).

    Article  ADS  Google Scholar 

  68. M. Davies, ref. [1], p. 615.

    Google Scholar 

  69. K. Muller, P. Etique and F. Kneubühl, ref. [1], p. 265.

    Google Scholar 

  70. I. Laulicht and S. Meirman, ref. [1], p. 213.

    Google Scholar 

  71. R. Arndt, R. Moorman and A. Schaffer, ref. [1], p. 217.

    Google Scholar 

  72. G. Döge, ref. [1], p. 225.

    Google Scholar 

  73. S. Sundler and R.E.D. McClung, ref. [1], p. 273.

    Google Scholar 

  74. M. Gilbert and M. Drifford, ref. [1], p. 279.

    Google Scholar 

  75. N.I. Rezaev, ref. [1], p. 309.

    Google Scholar 

  76. J.E. Griffiths, ref. [1], p. 327.

    Google Scholar 

  77. S. Bratos and E. Maréchal, Phys. Rev. A 4, 1078 (1971).

    Article  ADS  Google Scholar 

  78. P. Lallemand, ref. [1], p. 517.

    Google Scholar 

  79. J.P. Munch and S. Candau, ref. [1], p. 535.

    Google Scholar 

  80. N.D.Gershon and I. Oppenheim, ref. [1], p. 553.

    Google Scholar 

  81. C. Demoulin, C.J. Montrose and N. Ostrowsky, ref. [1],p. 575.

    Google Scholar 

  82. J.V. Champion and D.A. Jackson, ref. [1], p. 585.

    Google Scholar 

  83. J. Dill and T.A. Litovitz, ref. [1], p. 605.

    Google Scholar 

  84. P.A. Fleury and J.P. Boon, Advances in Chemical Physics (Prigogine and Rice) XXIV, 1, 1973.

    Article  Google Scholar 

  85. W.M. Gelbart, Advances in Chemical Physics (Prigogine and Rice) XXVI, 1 (1974).

    Google Scholar 

  86. A. Abragam, “The Principles of Magnetic Resonance”, Oxford University Press (1960).

    Google Scholar 

  87. C.Y. Schlichter, Principles of Magnetic Resonance, Harper and Row (1963).

    Google Scholar 

  88. H.G. Hertz, ref. [1], p. 337.

    Google Scholar 

  89. A.J. Dianoux, A. Heidemann, F. Volino and H. Hervet, Molec. Phys. 32 1521 (1976).

    Article  ADS  Google Scholar 

  90. A. Loewenstein, E. Glaser and R. Ader, ref. [1], p. 403.

    Google Scholar 

  91. W.T. Huntress, Jr., Advances in Magnetic Resonance, 4, 2 (1970).

    Google Scholar 

  92. J.E. Griffith, ref.[1], p. 327.

    Google Scholar 

  93. P. Rigny and J. Virlet, J. Chem. Phys. 47, 4645 (1967).

    Article  ADS  Google Scholar 

  94. M. Gilbert and M. Drifford, ref. [1], p 279.

    Google Scholar 

  95. P.S. Hubbard, Phys. Rev. 131, 1155 (1963).

    Article  ADS  Google Scholar 

  96. J. Jonas, J. Dezwaan and J.H. Campbell, ref. [1], P. 359.

    Google Scholar 

  97. R. Eckert, G. Loos and H. Sillescu, ref. [1], p. 385.

    Google Scholar 

  98. R. Mills, ref. [1], p. 391.

    Google Scholar 

  99. M.D. Zeidler, ref. [1], p. 421.

    Google Scholar 

  100. E. Von Goldammer, H.D. Ludemann and A. Müller, J. Chem. Phys. 60, 4590 (1974).

    Article  ADS  Google Scholar 

  101. C.N.R. Rao. “W and Visible Spectra”, Butterwords (1967).

    Google Scholar 

  102. T.J. Chuang and K.B. Eisenthal, J. Chem. Phys. 57, 5094 (1972).

    Article  ADS  Google Scholar 

  103. P.A. Madden and H. Wennerström, Molec. Phys. 31, 1103 (1976).

    Article  ADS  Google Scholar 

  104. K.P. Singh and J.G. Mullen, Phys. Rev. A, 6, 2354 (1972).

    Article  ADS  Google Scholar 

  105. M. Soltwisch, M. Elwenspoek and D. Quitmann, Molec. Phys. 34, 33 (1977).

    Article  ADS  Google Scholar 

  106. J.H. Wang, D. Kivelson and W. Plachy, J. Chem. Phys. 58, 1753 (1973).

    Article  ADS  Google Scholar 

  107. G. Martini, M. Romanelli and L. Burlamacchi, ref. [1], p. 371.

    Google Scholar 

  108. Spin Labeling: Theory and Applications“. Ed. L.J. Berliner, Academic Press (1976).

    Google Scholar 

  109. K.H. Hausser and D. Stehlik, Advances in Magnetic Resonance 3, 79 (1968).

    Google Scholar 

  110. P. Boyer, A. Tissier, J.I. Vargas and P. Vulliet, Chem. Phys. Lett. 14, 601 (1972).

    Article  ADS  Google Scholar 

  111. P. Boyer and P. Vulliet, Proceedings of the EUCHEM Conference on Liquids, FRG April (1976) J. Wiley (1978).

    Google Scholar 

  112. R.M. Stephen and H. Fauenfelder, “Alpha, beta and gamma spectroscopy”. North-Holland (1965). Chap. XIX, ed. Sieghbahn.

    Google Scholar 

  113. J. Lamb, ref. [1], p. 29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Volino, F. (1978). Spectroscopic Methods for the Study of Local Dynamics in Polyatomic Fluids. In: Dupuy, J., Dianoux, A.J. (eds) Microscopic Structure and Dynamics of Liquids. NATO Advanced Study Institutes Series, vol 33. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0859-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0859-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0861-4

  • Online ISBN: 978-1-4684-0859-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics