Skip to main content

Correlation Functions and Their Relationship with Experiments

  • Chapter
Microscopic Structure and Dynamics of Liquids

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 33))

  • 139 Accesses

Abstract

Time correlation functions (TCF) are powerful tools in the study of microscopic dynamic processes in gases, liquids, solids or plasmas, in or near thermodynamic equilibrium. For the statistical mechanics theorist they are of primary importance, since they yield a measure of intrinsic microscopic fluctuations, and a quantitative description of “molecular dynamics” in many-body systems. According to the choice of microscopic quantities which are correlated, TCF’s probe both single-particle motions and collective modes resulting from the cooperative motions of large numbers of particles. TCF’s are also a convenient bridge between microscopic and macroscopic descriptions of many-body systems; in particular they yield exact microscopic expressions for the phenomenological transport coefficients of hydrodynamics.

Equipe associée au C.N.R.S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Kubo: Rep. Progr. Phys. 29, 255 (1966).

    Article  ADS  Google Scholar 

  2. P.C. Martin in “Many-Body Physics”, edited by C. De Witt and R. Balian (Gordon and Breach, New York (1968)).

    Google Scholar 

  3. R.G. Gordon: Advances in Magnetic Resonance 3, 1 (1968).

    Google Scholar 

  4. B.J. Berne in “Physical Chemistry, volume VIII B, edited by D. Henderson (Academic Press, New York (1971)).

    Google Scholar 

  5. P. Schofield in “Statistical Mechanics”, volume 2 (Specialist Periodical Reports), edited by K. Singer (The Chemical Society, London (1976)).

    Google Scholar 

  6. D. Forster: “Hydrodynamics, Fluctuations, Broken Symmetry and Correlation Functions” (Benjamin, Reading, Ms. (1975))

    Google Scholar 

  7. B.J. Berne and R. Pecora: “Dynamic Light Scattering” (Wiley, New York (1976)).

    Google Scholar 

  8. J.P. Hansen and I.R. McDonald: “Theory of Simple Liquids” (Academic Press, London (1976)).

    Google Scholar 

  9. P. Langevin: C.R. Acad. Sci. (Paris) 146, 530 (1908).

    MATH  Google Scholar 

  10. R. Kubo: J. Phys. Soc. Japan 12, 570 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  11. H. Nyquist: Phys. Rev. 32, 110 (1928).

    Article  ADS  Google Scholar 

  12. L.P. Kadanoff and P. Martin: Ann. Phys. 24, 419 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. S. Yip and M. Nelkin: Phys. Rev. 135, Al241 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  14. R. Zwanzig in “Lectures in Theoretical Physics”, vol. 3, edited by W.F. Britton, W.B. Downs and J. Downs ( Interscience, New York, 1961 ).

    Google Scholar 

  15. H. Mori: Progr. Theor. Phys. 33, 423 and 34, 399 (1965).

    Article  ADS  Google Scholar 

  16. D. Levesque and L. Verlet,: Phys. Rev. A2, 2514 (1970).

    Article  ADS  Google Scholar 

  17. L. Van Hove: Phys. Rev. 95, 249 (1954).

    Article  ADS  MATH  Google Scholar 

  18. B.J. Berne, J.P. Boon and S.A. Rice: J. Chem. Phys. 45, 1086 (1966).

    Article  ADS  Google Scholar 

  19. B.J. Alder and T.E. Wainwright: Phys. Rev. AI, (1970).

    Google Scholar 

  20. Y. Pomeau and P. Résibois: Physics Reports. 19C, N 2 (1975).

    Google Scholar 

  21. L. Onsager: Phys. Rev. 37, 405 and 38, 2265 (1931).

    Article  ADS  MATH  Google Scholar 

  22. L.D. Landau and E.M. Lifshitz: “Fluid Mechanics” ( Pergamon Press, London, 1963 ).

    MATH  Google Scholar 

  23. R. Zwanzig and R.D. Mountain: J. Chem. Phys. 43, 4464 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  24. N.K. Ailawadi, A. Rahman and R. Zwanzig: Phys. Rev. A4, 1616 (1971).

    Article  ADS  Google Scholar 

  25. D. Forster, P.C. Martin and S. Yip: Phys. Rev. 170, 155 and 160 (1968).

    Google Scholar 

  26. D. Levesque, L. Verlet and J. Kürkijarvi: Phys. Rev. A7, 1690 (1973).

    Article  ADS  Google Scholar 

  27. R. Mountain and J. Deutch: J. Chem. Phys. 50, 1103 (1969).

    Article  ADS  MATH  Google Scholar 

  28. B.J. Alder, J. Strauss and J.J. Weis: J. Chem. Phys. 59, 1002 (1973).

    Article  ADS  Google Scholar 

  29. D. Oxtoby and W.M. Gelbart: Mol. Phys. 29, 1569 (1975).

    Article  ADS  Google Scholar 

  30. P.G. De Gennes: Physica 25, 825 (1958).

    Article  Google Scholar 

  31. J.R.D. Copley and S.W. Lovesey: Rep. Progr. Phys. 38, 461 (1975).

    Article  ADS  Google Scholar 

  32. V.F. Sears: Can. J. Phys. 44, 1299 (1966).

    Article  ADS  Google Scholar 

  33. J.J. Weis and D. Levesque: Phys. Rev. A13, 450 (1976).

    Article  ADS  Google Scholar 

  34. D. Levesque and J.J. Weis: Phys. Rev. Al2, 2584 (1975).

    Google Scholar 

  35. M.P. Tosi and F.G. Fumi: J. Phys. Chem. Solids 25, 31 and 45 (1964).

    Google Scholar 

  36. M.J.L. Sangster and M. Dixon: Adv. in Phys. 25, 247 (1976).

    Article  ADS  Google Scholar 

  37. J.P. Hansen and I.R. McDonald: Phys. Rev. A11, 2111 (1975).

    Google Scholar 

  38. P.C. Martin: Phys. Rev. 161, 143 (1967).

    Article  ADS  Google Scholar 

  39. P.V. Giaquinta, M. Parrinello and M.P. Tosi: Phys. Chem. Liqu. 5, 305 (1976).

    Article  Google Scholar 

  40. P. Vieillefosse: J. de Phys. 38, L-43 (1977).

    Google Scholar 

  41. F.H. Stillinger and R. Lovett J. Chem. Phys. 49, 1991 (1968).

    Google Scholar 

  42. G. Ciccotti, G. Jacucci and I.R. McDonald: Phys. Rev. A13, 426 (1976).

    Article  ADS  Google Scholar 

  43. P. Vieillefosse and J.P. Hansen: Phys. Rev. Al2, 1106 (1975).

    Google Scholar 

  44. I.R. McDonald, P. Vieillefosse and J.P. Hansen Phys. Rev. Letters 39, 271 (1977).

    Article  ADS  Google Scholar 

  45. M. Baus: Physica.

    Google Scholar 

  46. D.L. Price and J.R.D. Copley: Phys. Rev. A11, 2124 (1975).

    ADS  Google Scholar 

  47. J.R.D. Copley: private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Hansen, JP. (1978). Correlation Functions and Their Relationship with Experiments. In: Dupuy, J., Dianoux, A.J. (eds) Microscopic Structure and Dynamics of Liquids. NATO Advanced Study Institutes Series, vol 33. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0859-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0859-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0861-4

  • Online ISBN: 978-1-4684-0859-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics