Skip to main content
  • 118 Accesses

Abstract

In order to explain the signal transmission and coding and decoding demonstrated experimentally in this chapter, the following model has been proposed (see Fig. 38) [35, 37, 57]. Messages sent from point A to point B are first coded, then transmitted over two parallel channels to a decoder, and finally decoded. The coded message is transmitted along the parallel channels at the rate of five letters per minute, but only one letter of the five per minute is correlated between channels. The dynamic characteristics of the input-output function are satisfied by this correlation of one letter per minute. Either channel alone is adequate for behavioral input-output, and the effect of either channel alone is indistinguishable from the other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

  1. Allen, E. J.: Studies on the nervous system of crustacea. I. Some nerve elements of the embryonic lobster. Quart. J. Mil. Sci. N. S. 36: 461–497 (1894).

    Google Scholar 

  2. Barnes, T. C.: Peripheral tonus associated with impulse discharge in crustacean nerve. J. Physiol. 70: 24–25 (1930).

    Google Scholar 

  3. Cox, A. R., and Smith, W. L.: Superposition of several strictly periodic sequences of events. Biometrika 40: 1 (1953).

    MathSciNet  MATH  Google Scholar 

  4. Cox, A. R., and Smith, W. L.: On the superposition of renewal processes. Biometrika 41: 91–99 (1954).

    MathSciNet  MATH  Google Scholar 

  5. Cobb, S.: Observation on the comparative anatomy of the avian brain. Perspectives Biol. Med. III: 383–408 (1960).

    Google Scholar 

  6. England, T. E., and Hermann, H. T.: Transmission of neural impulses in the ventral cord of the crayfish. Tech. Report, Research Laboratory of Electronics, M.I.T. (in preparation).

    Google Scholar 

  7. Fernandex-Moran, H.: Fine structure of the light receptors in the compound eyes of insects. Exptl. Cell Res. Suppl. 5: 586–644 (1958).

    Google Scholar 

  8. Goldsmith, T. H., and Philpott, O. E.: Microstructure of the compound eyes of insects. J. Biophys. Biochem. Cytol. 3: 429–440 (1957).

    Article  Google Scholar 

  9. Groen, J. J., Lowenstein, O., and Vendrik, A. J. H.: The mechanical analysis of the responses from the end organs of the semicircular canal in the isolated elasmobranch labyrinth. J. Physiol. 117: 320–346 (1952).

    Google Scholar 

  10. Hama, K.: A photoreceptor-like structure (ventral) nerve. Anat. Rec. 140: 329–336 (1961).

    Article  Google Scholar 

  11. Hartline, H. K.: A quantitative and descriptive study of the electrical response to illumination of the arthropod eye. Am. J. Physiol. 83: 466–483 (1928).

    Google Scholar 

  12. Hartline, H. K., and Graham, C. H.: Nerve impulses from single receptors in the eye. J. Cellular Comp. Physiol. 1: 277–295 (1932).

    Article  Google Scholar 

  13. Hartline, H. K.: Intensity and duration in the excitation of single photoreceptor unit. J. Cellular Comp. Physiol. 5: 229–247 (1934).

    Article  Google Scholar 

  14. Hermann, H. T., and Stark, L.: Random walk response of the crayfish. Quart. Prog. Rept., Research Laboratory of Electronics, M.I.T. 61: 230–234 (1961).

    Google Scholar 

  15. Hermann, H. T., and Stark, L.: Prerequisites for a photoreceptor structure in the crayfish tail ganglion. Anat. Rec. 147: 209–217 (1962).

    Article  Google Scholar 

  16. Hermann, H. T., and Stark, L.: Single unit responses in a primitive photoreceptive organ. J. Neurophysiol. 26: 215–228 (1963).

    Google Scholar 

  17. Hermann, H. T., Stark, L., and Willis, P. A.: Instrumentation for processing neural signals. Electroencephalog. Clin. Neurophysiol. 14: 557–560 (1962).

    Article  Google Scholar 

  18. Hesse, R.: Untersuchungen über die Organe der Lichtempfindung bei Lumbriuden. Z. Wiss. Zool. 61: 393–419 (1896).

    Google Scholar 

  19. Hesse, R.: Untersuchungen über die Organe der Lichtempfindung bei Niederen Tieren, die Sehorgane des Amphioxus. Z. Wiss. Zool. 63: 456–464 (1890).

    Google Scholar 

  20. Johnson, G. E.: Giant nerve fibers in crustaceans, with special reference to cambarus and palemonetes. J. Comp. Neurol. 36: 323–375 (1924).

    Article  Google Scholar 

  21. Johnson, G. E.: Studies on the functions of the giant fibers of crustaceans, with special reference to cambarus and palemonetes. J. Comp. Neurol. 42: 19–33 (1926).

    Article  Google Scholar 

  22. Kennedy, D.: Responses from the crayfish caudal photoreceptor. Am. J. Ophthalmol. 11: 19–26 (1958).

    Google Scholar 

  23. Kennedy, D.: Physiology of photoreceptor neurons in the abdominal nerve cord of the crayfish. J. Gen. Physiol. 46: 551–572 (1963).

    Article  Google Scholar 

  24. Kennedy, D., and Bruno, M. S.: Spectral sensitivity of crayfish and lobster vision. J. Gen. Physiol. 44: 1089–1102 (1961).

    Article  Google Scholar 

  25. Kennedy, D., and Preston, J. B.: Activity patterns of interneurons in the caudal ganglion of the crayfish. J. Gen. Physiol. 43: 655–670 (1960).

    Article  Google Scholar 

  26. Krieger, R.: Über das Centralnervensystem des Flusskrebses. Z. Wiss. Zool. 33: 527–594 (1880).

    Google Scholar 

  27. Kropp, B., and Enzmann, E. V.: Photic stimulation and leg movement in the crayfish. J. Gen. Physiol. 16: 905–910 (1933).

    Article  Google Scholar 

  28. Lamport, H., Mauro, A., and Stark, L.: How is tension transmitted from striated muscle fiber to tendon? Abstracts of Communications, 20th International Physiological Congress, Brussels, Belgium.

    Google Scholar 

  29. MacKay, D. M., and McCulloch, W. S.: The limiting information capacity of a neuronal link. Bull. Math. Biophys. 14: 127–135 (1952).

    Article  Google Scholar 

  30. Millecchia, R.: Artificial photosensitization of the crayfish ventral nerve cord. Quart. Prog. Rept., Research Laboratory of Electronics, M.I.T. 70: 345–346 (1963).

    Google Scholar 

  31. Miller, W. H.: Morphology of the ommatidia of the compound eye of limulus. J. Biophys. Biochem. Cytol. 3: 421–428 (1957).

    Article  Google Scholar 

  32. Moody, M. F., and Robertson, J. D.: The fine structure of some retinal photoreceptors. J. Biophys. Biochem. Cytol. 7: 87–91 (1960).

    Article  Google Scholar 

  33. Moore, G. P.: Personal communication (1964).

    Google Scholar 

  34. Moore, G. P., and Segundo, J. P.: Stability patterns in interneuronal pacemaker regulation. Symposium for Biomedical Engineering, San Diego, California (1963).

    Google Scholar 

  35. Negrete, J., Yankelevich, G. N., and Stark, L.: Component analysis of the abdominal photoreceptor walking movement system in the crayfish. Quart. Prog. Rept., Research Laboratory of Electronics, M.I.T. 76: 336–343 (1965).

    Google Scholar 

  36. Negrete, J., Yankelevich, G. N., Theodoridis, G., and Stark, L.: Light inhibitory effects in the crayfish sixth ganglion. Quart. Prog. Rept., Research Laboratory of Electronics, M.I.T. 74: 252–254 (1964).

    Google Scholar 

  37. Negrete, J., Yankelevich, G. N., Theodoridis, G., and Stark, L.: Signal information carried by a train of nerve pulses. Quart. Prog. Rept., Research Laboratory of Electronics, M.I.T. 74: 255–261 (1964).

    Google Scholar 

  38. Poggio, G. F., and Viernstein, S. J.: Time series analysis of impulse sequences of thalamic somatic sensory neurons. J. Neurophysiol. 27: 517–545 (1964).

    Google Scholar 

  39. Pringle, J. W. S., and Wilson, V. J.: The response of a sense organ to a harmonic stimulus. J. Exptl. Biol. 29: 229 (1952).

    Google Scholar 

  40. Prosser, C. L.: Action potentials in the nervous system of the crayfish. I. Spontaneous impulses. J. Cellular Comp. Physiol. 4: 185–209 (1934).

    Article  Google Scholar 

  41. Prosser, C. L.: Action potentials in the nervous system of the crayfish. II. Responses to illumination of the eye and caudal ganglion. J. Cellular Comp. Physiol. 4: 363–377 (1934).

    Article  Google Scholar 

  42. Prosser, C. L.: Action potentials in the nervous system of the crayfish. III. Central responses to proprioceptive and tactile stimulation. J. Cellular Comp. Physiol. 4: 495–505 (1934).

    Google Scholar 

  43. Prosser, C. L.: Effect of salts upon “spontaneous” activity in the nervous system of the crayfish. J. Cellular Comp. Physiol. 15: 55–65 (1940).

    Article  Google Scholar 

  44. Ripley, S. H., and Wiersma, A. G.: The effect of spaced stimulation of excitatory and inhibitory axons of the crayfish. Physiol. Comp. Ecol. III: 1–17 (1953).

    Google Scholar 

  45. Roberts, T. M.: Discussion of speculations on servo control of movement. In: The Spinal Cord. J. L. Malcolm and J. A. B. Gray, eds., Churchill (London) (1953), pp. 255–258.

    Google Scholar 

  46. Robertson, J. D.: The molecular structure and contact relationships of cell membranes. Prog. Biophys. 10: 343–418 (1960).

    Google Scholar 

  47. Segundo, J. P., and Moore, G. P.: Functional significance of neuronal spike discharge parameters. Bol. Inst. Estud. Med. Biol. (Mex.) 21: 371–373 (1963).

    Google Scholar 

  48. Segundo, J. P., Moore, G. P., Stensaas, L. J., and Bullock, T. H.: Sensitivity of neurons in Aplysia to temporal pattern of arriving impulses. J. Exptl. Biol. 40: 643–667 (1963).

    Google Scholar 

  49. Shannon, C. E.: Mathematical theory of communication. Bell System Tech. J. 27: 379–423 (1948).

    MathSciNet  MATH  Google Scholar 

  50. Sjöstrand, F. S.: Retinal rods and cones: the ultrastructure of the retinal receptors of the vertebrate eye. Ergeb. Biol. 21: 128–160 (1959).

    Article  Google Scholar 

  51. Stark, L.: Stability oscillations, and noise in the human pupil servomechanism. Proc. Inst. Radio Engrs. 47: 1925 (1959).

    Google Scholar 

  52. Stark, L.: Transfer function of the biological photoreceptor. Wright Air Develop. Ctr. Tech. Rept. 59–311: 1–22 (1959).

    Google Scholar 

  53. Stark, L., and Hermann, H. T.: Light transfer function of a biological photoreceptor. Nature (London) 191: 1173–1174 (1961).

    Article  Google Scholar 

  54. Stark, L., and Hermann, H. T.: The transfer function of a photoreceptor organ. Kybernetik 1: 124–129 (1961).

    Article  Google Scholar 

  55. Stark, L., and Hermann, H. T.: Review of photoreceptor responses to wavelength variables. IRE Trans. on Electronic Computers EC-11: 806 (1962).

    Google Scholar 

  56. Stark, L., and Sherman, P. M.: A servoanalytic study of the consensual pupil reflex to light. J. Neurophysiol. 20: 17–26 (1957).

    Google Scholar 

  57. Theodoridis, G., Negrete, J., Yankelevich, G. N., and Stark, L.: Photosensitive neurons of the crayfish sixth ganglion as a dual system, each neuron carrying same signal information. Quart. Prog. Rept., Research Laboratory of Electronics, M.I.T. 75: 197–209 (1964).

    Google Scholar 

  58. Utah, W. R., and Kasprzak, H.: The caudal photoreceptor of the crayfish: adaptation and the luminosity function. Abstracts of Biophys. Sec., Washington, D.C., TE 7 (1962).

    Google Scholar 

  59. Van Harreveld, A.: A physiological solution for fresh water crustaceans. Proc. Soc. Exptl. Biol. Med. 34: 428–432 (1936).

    Google Scholar 

  60. Wall, P. D., Lettvin, J. Y., McCulloch, W. S., and Pitts, W. H.: Factors limiting the maximum impulse transmitting ability of an afferent system of nerve fibers. In: Information Theory. C. Cherry, ed., Academic Press, New York (1956), pp. 329–343.

    Google Scholar 

  61. Welsh, J. H.: The caudal photoreceptor and responses of the crayfish to light. J. Cellular Comp. Physiol. 4: 379–388 (1934).

    Article  Google Scholar 

  62. Wiersma, C. A. G.: Function of the giant fibers of the center nervous system of the crayfish. Proc. Soc. Exptl. Biol. Med. 38: 661–662 (1941).

    Google Scholar 

  63. Wiersma, C. A. G.: Giant nerve fiber system of the crayfish. A contribution to comparative physiology of synapses. J. Neurophysiol. 10: 23–38 (1947).

    Google Scholar 

  64. Wiersma, C. A. G., and Adams, R. T.: The influence of nerve impulse sequence on the contraction of different muscles of crustacea. Physiol. Comp. Ecol. II: 20–33 (1950).

    Google Scholar 

  65. Wiersma, C. A. G., and Norritski, E.: The mechanism of the nervous regulations of the crayfish heart. J. Exptl. Biol. Med. 19: 255–265 (1942).

    Google Scholar 

  66. Wiersma, C. A. G., Ripley, S. H., and Christensen, E.: The central representation of sensory stimulation in the crayfish. J. Cellular Comp. Physiol. 46: 307 (1955).

    Article  Google Scholar 

  67. Wolken, J. J.: Retinal structure. Mollusc cephalopods: octopus, sepia. J. Biophys. Biochem. Cytol. 4: 835–838 (1958).

    Article  Google Scholar 

  68. Wolken, J. J., Capenos, J., and Turano, A.: Photoreceptor structures. III. Drosophila melanogaster. J. Biophys. Biochem. Cytol. 3: 441–447 (1957).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Plenum Press

About this chapter

Cite this chapter

Stark, L. (1968). Nerve Impulse Code. In: Neurological Control Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0706-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0706-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0708-2

  • Online ISBN: 978-1-4684-0706-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics