Skip to main content

Accommodative Tracking: A Trial-and-Error Function

  • Chapter
Neurological Control Systems

Abstract

Fincham [19] and Campbell and Westheimer [12] have reported that the accommodative tracking system utilized a variety of subtle clues for focus errors of less than 1 diopter. Specifically, Fincham emphasized the role of the color fringes due to the eye’s chromatic aberration, and the use of changes in fixation in determining the initial direction of an accommodative effort. Later Campbell and Westheimer confirmed Fincham’s findings with respect to chromatic aberration and reported that the eye’s spherical aberration and astigmatism could also act as stimuli for accommodative tracking in some subjects. Fincham was unable to demonstrate the usefulness of spherical aberration as a clue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

  1. Allen, M. J.: The stimulus to accommodation. Am. J. Opt. 32: 422–431 (1955).

    Google Scholar 

  2. Allen, M. J., and Carter, J. H.: An infra-red optometer to study the accommodative mechanism. Am. J. Opt. 37: 403 (1960).

    Google Scholar 

  3. Alpern, M.: Variability of accommodation during steady fixation levels of illuminance. J. Opt. Soc. Am. 48: 193 (1958).

    Article  Google Scholar 

  4. Alpern, M.: Accommodation, in the Eye, Vol. 3, H. Dayson, ed., Academic Press, New York (1961), pp. 191–229.

    Google Scholar 

  5. Alpern, M., and Ellen, P.: A quantitative analysis of the horizontal movements of the eye in the experiment of Johaness Müller. I. Methods and results. Am. J. Ophthalmol. 42: 289–296 (1956).

    Google Scholar 

  6. Bannon, R. E., Cooley, F. H., Fisher, H. M., and Textor, R. T.: The stigmatoscopy method of determining the binocular refractory status. Am. J. Opt. and Arch. Am. Acad. Opt. 27: 8 (1950). ( We wish to thank Professor G. Westheimer for calling our attention to this reference. )

    Google Scholar 

  7. Bower, J. C., and Schultheiss, P. M.: Introduction to the Design of Servomechanisms, Wiley, New York (1958).

    Google Scholar 

  8. Campbell, F.W., and Robson, J. G.: High speed infrared optometer. J. Opt. Soc. Am. 49: 268 (1959).

    Article  Google Scholar 

  9. Campbell, F. W., Robson, J. G., and Westheimer, G.: The control of accommodation in the human eye. Proceedings of 2nd International Congress of Cybernetics, Namur, Sept. 3–10, 1958, 1: 924 (1958).

    Google Scholar 

  10. Campbell, F. W., Robson, J. G., and Westheimer, G.: Fluctuations of accommodation under steady viewing conditions. J. Physiol. 145: 579 (1959).

    Google Scholar 

  11. Campbell, F.W., and Westheimer, G.: Sensitivity of the eye to differences in focus. J. Physiol. 143: 18 (1958).

    Google Scholar 

  12. Campbell, F.W., and Westheimer, G.: Factors influencing accommodation responses of the human eye. J. Opt. Soc. Am. 49: 568 (1959).

    Article  Google Scholar 

  13. Campbell, F.W., and Westheimer, G.: Dynamics of accommodation response of the human eye. J. Physiol. 151: 285 (1960).

    Google Scholar 

  14. Campbell, F. W., Westheimer, G., and Robson, J. G.: Significance of fluctuations of accommodation. J. Opt. Soc. Am. 48: 669 (1958).

    Article  Google Scholar 

  15. Campbell, F. W., Westheimer, G., and Robson, J. G.: Fluctuations of accommodation under steady viewing condition. J. Physiol. 145: 579 (1959).

    Google Scholar 

  16. Carter, J. G.: A servoanalysis of the human accommodative mechanism. Arch. Soc. Am. Oftal. Optom. 4: 137 (1962).

    Google Scholar 

  17. Ditchburn, R. W., and Ginsborg, B. L.: Vision with stabilized retinal image. Nature 170: 36 (1952).

    Article  Google Scholar 

  18. Eykhoff, P.: Adaptive and optimalizing control systems. IEE Trans. Auto. Control AC-5: 148 (1960).

    Google Scholar 

  19. Fincham, E. F.: The accommodation reflex and its stimulus. Brit. J. Ophthalmol. 35: 381–393 (1951).

    Article  Google Scholar 

  20. Fincham, E. F., and Walton, J.: The reciprocal action of accommodation and convergence. J. Physiol. 137: 488–508 (1957).

    Google Scholar 

  21. Graham, D., and McRuer, D.: Analysis of Nonlinear Control Systems, Wiley, New York (1961).

    MATH  Google Scholar 

  22. Hamasaki, D., Ong, J., and Marg, E.: The amplitude of accommodation in presbyopia. Am. J. Opt. and Arch. Am. Acad. Opt. Monograph 192: 1–12 (1956).

    Google Scholar 

  23. Houk, J., Okabe, Y., Rhodes, H., Willis, P. A., and Stark, L.: Transient responses of human motor coordination system. Quart. Prog. Rept., Research Laboratory of Electronics, M.I.T. 64: 315 (1962).

    Google Scholar 

  24. Marg, E., and Reeves, J. L.: Accommodative response of the eye of the aged cat to electrical stimulation of the ciliary ganglion. J. Opt. Soc. Am. 45: 926 (1955).

    Article  Google Scholar 

  25. Morgan, M. W., Jr.: The clinical aspects of accommodation and convergence. Am. J. Opt. 21: 301–313 (1944).

    Google Scholar 

  26. O’Neill, E. L., and Asakura, T.: Optical image formation in terms of entropy transformations. J. Phys. Soc. Japan 16: 301 (1961).

    Article  Google Scholar 

  27. Ogle, K. N., and Marten, T. G.: On the accommodative convergence and proximal convergence. AMA Arch. Ophthalmol. 57: 702–715 (1957).

    Google Scholar 

  28. Okabe, Y., Rhodes, H., Willis, P. A., and Stark, L.: Simultaneous hand and eye tracking movements. Quart. Prog. Rept., Research Laboratory of Electronics, M.I.T. 66: 395 (1962).

    Google Scholar 

  29. Rashbass, C., and Westheimer, G.: Disjunctive eye movements. J. Physiol. 159: 339 (1961).

    Google Scholar 

  30. Riggs, L., Ratliff, F., Cornsweet, J., and Cornsweet, T.: The disappearance of steadily fixated visual test objects. J. Opt. Soc. Am. 43: 495 (1953).

    Article  Google Scholar 

  31. Roth, H.: Electric potentials and accommodation of the rabbit eye. Doctoral Dissertation, University of California, Berkeley (1961).

    Google Scholar 

  32. Stark, L.: Stability oscillations and noise in the human pupil servomechanism. Proc. IRE 47: 1925 (1959).

    Article  Google Scholar 

  33. Stark, L.: Environmental clamping of biological systems. J. Opt. Soc. Am. 52: 925 (1962).

    Article  Google Scholar 

  34. Stark, L., Campbell, F. W., and Atwood, J.: Pupil unrest: an example of noise in a biological servomechanism. Nature 182: 857 (1958).

    Article  Google Scholar 

  35. Stark, L., lida, M., and Willis, P.: Dynamic characteristics of the motor coordination system in man. Biophys. 1: 279 (1961).

    Article  Google Scholar 

  36. Stark, L., Okabe, Y., and Willis, P. A.: Sampled-data properties of the human motor coordination system. Quart. Prog. Rept. Research Laboratory of Electronics, M.I.T. 67: 220 (1962).

    Google Scholar 

  37. Stark, L., and Sherman, P.: A servoanalytic study of consensual pupil reflex to light. J. Neurophys. 21: 17 (1957).

    Google Scholar 

  38. Stark, L., and Takahashi, Y.: Accommodation tracking. Quart. Prog. Rept., Research Laboratory of Electronics, M.I.T. 67: 205 (1962).

    Google Scholar 

  39. Stark, L., and Takahashi, Y.: The absence of odd-error signal mechanism in human accommodation. IEEE Trans. Biomed. Eng. (accepted) and IEEE Intern. Cony. Record, Part 6: 202–213 ( March 2226, 1965 ).

    Google Scholar 

  40. Stark, L., Takahashi, Y., and Zames, G.: The dynamics of the human lens system. Quart. Prog. Rept., Research Laboratory of Electronics, M.I.T. 66: 337 (1962).

    Google Scholar 

  41. Stark, L., Young, L., and Vossius, G.: Predictive control of eye tracking movements. IRE Trans. Human Factors Electron. HFE-3: 52 (1962).

    Article  Google Scholar 

  42. Termer, F. E., Harman, W. W., and Truxal, J. G.: Signals and Systems in Electrical Engineering, McGraw-Hill, New York (1962).

    Google Scholar 

  43. Troelstra, A., Zuber, B. L., Miller, D., and Stark, L.: Accommodation tracking. Quart. Prog. Rept., Research Laboratory Electronics, M.I.T. 72: 262 (1964).

    Google Scholar 

  44. Troelstra, A., Zuber, B., Miller, D., and Stark, L.: Accommodative tracking: a trial-and-error function. Vis. Res. 4: 585–594 (1964).

    Article  Google Scholar 

  45. Young, L., and Stark, L.: A sampled-data model for eye tracking movements. Quart. Prog. Rept., Research Laboratory of Electronics, M.I.T. 66: 370 (1962).

    Google Scholar 

  46. Young, L., and Stark, L.: Variable feedback experiments supporting a discrete model for eye tracking movements. IRE Trans. Human Factors Electron. Special manual control issue. HFE-4: 38 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Plenum Press

About this chapter

Cite this chapter

Stark, L. (1968). Accommodative Tracking: A Trial-and-Error Function. In: Neurological Control Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0706-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0706-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0708-2

  • Online ISBN: 978-1-4684-0706-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics