Skip to main content

Chromosome Structural Aberrations

  • Chapter
Human Chromosomes

Part of the book series: Springer Study Edition ((SSE))

  • 172 Accesses

Abstract

Chromosome breaks sometimes occur spontaneously, or they may be induced by a mutagenic agent such as ionizing radiation or DNA-damaging chemicals. Unlike normal chromosome ends, broken ends tend to join together. Usually the broken ends rejoin; in other words, the break heals. However, a break may lead to a deletion or, if more than one break has occurred in a cell, to structural rearrangements of chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahuja YR (1990) Fragile site analysis: its significance in environmental mutagenesis. In: Mendelsohn ML, Albertini RJ (eds) Mutation and the environment, Part B. Wiley-Liss, New York, pp 371–384

    Google Scholar 

  • Auerbach C (1976) Mutation research. Problems, results and perspectives. Chapman and Hall, London

    Google Scholar 

  • Auerbach C (1978) Forty years of mutation research: a pilgrim’s progress. Heredity 40:177–187

    Article  PubMed  CAS  Google Scholar 

  • Cohen MM, MacGillivray MH, Capraro VJ, et al. (1973) Human dicentric Y chromosomes. J Med Genet 10:74–79

    Article  PubMed  CAS  Google Scholar 

  • Cooke P, Gordon RR (1965) Cytological studies on a human ring chromosome. Ann Hum Genet 29:147–150

    Article  PubMed  CAS  Google Scholar 

  • Daly RF, Patau K, Therman E, et al. (1977) Structure and Barr body formation of an Xp+ chromosome with two inactivation centers. Am J Hum Genet 29:83–93

    PubMed  CAS  Google Scholar 

  • Drets ME, Stoll M (1974) C-banding and non-homologous associations in Gryllus argentinus. Chromosoma 48:367–390

    Article  PubMed  CAS  Google Scholar 

  • Drets ME, Therman E (1983) Human telomeric 6; 19 translocation chromosome with a tendency to break at the fusion point. Chromosoma 88:139–144

    Article  PubMed  CAS  Google Scholar 

  • Dutrillaux B, Aurias A, Couturier J, et al. (1977) Multiple telomeric fusions and chain configurations in human somatic chromosomes. In: Chapelle A de la, Sorsa M (eds) Chromosomes today, Vol 6. Elsevier/North Holland, Amsterdam, pp 37–44

    Google Scholar 

  • Evans HJ (1962) Chromosome aberrations induced by ionizing radiations. Int Rev Cytol 13:221–321

    Article  CAS  Google Scholar 

  • Evans HJ (1974) Effects of ionizing radiation on mammalian chromosomes. In: German J (ed) Chromosomes and cancer. Wiley, New York, pp 191–237

    Google Scholar 

  • Evans HJ (1983) Effects on chromosomes of carcinogenic rays and chemicals. In: German J (ed) Chromosome mutation and neoplasia. Liss, New York, pp 253–279

    Google Scholar 

  • Fitzgerald PH, McEwan CM (1977) Total aneuploidy and age-related sex chromosome aneuploidy in cultured lymphocytes of normal men and women. Hum Genet 39:329–337

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald PH, Morris CM (1984) Telomeric association of chromosomes in B-cell lymphoid leukemia. Hum Genet 67:385–390

    Article  PubMed  CAS  Google Scholar 

  • Fryns JP, Azou M, Jaeken J, et al. (1981) Centromeric instability of chromosomes 1, 9, and 16 associated with combined immunodeficiency. Hum Genet 57:108–110

    PubMed  CAS  Google Scholar 

  • Gebhart E (1970) The treatment of human chromosomes in vitro: results. In: Vogel F, Röhrborn G (eds) Chemical mutagenesis in mammals and man. Springer, New York, pp 367–382

    Google Scholar 

  • Glover TW, Stein CK (1987) Induction of sister chromatid exchanges at common fragile sites. Am J Hum Genet 41:882–890

    PubMed  CAS  Google Scholar 

  • Glover TW, Stein CK (1988) Chromosome breakage and recombination at fragile sites. Am J Hum Genet 43:265–273

    PubMed  CAS  Google Scholar 

  • Hastie ND, Allshire RC (1989) Human telomeres: fusion and interstitial sites. Trends Genet 5:326–331

    Article  PubMed  CAS  Google Scholar 

  • Hecht F, Sandberg AA (1988) Of fragile sites and cancer chromosome breakpoints. Cancer Genet Cytogenet 31:1–3

    Article  PubMed  CAS  Google Scholar 

  • Hecht F, Ramesh KH, Lockwood DH (1990) A guide to fragile sites on human chromosomes. Cancer Genet Cytogenet 44:37–45

    Article  PubMed  CAS  Google Scholar 

  • Kihlman BA (1966) Actions of chemicals on dividing cells. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  • Kuhn EM, Therman E (1979) Chromosome breakage and rejoining of sister chromatids in Bloom’s syndrome. Chromosoma 73:275–286

    Article  Google Scholar 

  • Kuhn EM, Therman E (1982) Origin of symmetrical triradial chromosomes in human cells. Chromosoma 86:673–681

    Article  PubMed  CAS  Google Scholar 

  • Le Beau MM (1988) Editorial: Chromosomal fragile sites and cancer-specific breakpoints — a moderating viewpoint. Cancer Genet Cytogenet 31:55–61

    Article  PubMed  Google Scholar 

  • Levan G (1970) Contributions to the chromosomal characterization of the PTK1 rat-kangaroo cell line. Hereditas 64:85–96

    Article  PubMed  CAS  Google Scholar 

  • Lorda-Sanchez I, Binkert F, Maechler M, et al. (1991) A molecular study of X isochromosomes: parental origin, centromeric structure, and mechanisms of formation. Am J Hum Genet 49:1034–1040

    PubMed  CAS  Google Scholar 

  • Mandahl N, Heim S, Arheden K, et al. (1988) Rings, dicentrics, and telomeric association in histiocytomas. Cancer Genet Cytogenet 30:23–33

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn ML, Albertini RJ (eds) (1990) Mutation and the environment, Part B. Wiley-Liss, New York

    Google Scholar 

  • Nakagome Y, Abe T, Misawa S, et al. (1984) The “loss” of centromeres from chromosomes of aged women. Am J Hum Genet 36:398–404

    PubMed  CAS  Google Scholar 

  • Niebuhr E (1978) Cytologic observations in 35 individuals with a 5p — karyotype. Hum Genet 42:143–156

    Article  PubMed  CAS  Google Scholar 

  • Patau K (1965) The chromosomes. In: Birth defects: original article series, I. New York: The National Foundation, pp 71–74

    Google Scholar 

  • Rieger R, Michaelis A (1967) Die Chromosomenmutationen. Gustav Fischer, Jena

    Google Scholar 

  • Romain DR, Columbano-Green LM, Smythe RH, et al. (1986) Studies on three rare fragile sites: 2ql3, 12ql3, and 17pl2 segregating in one family. Hum Genet 73:164–170

    Article  PubMed  CAS  Google Scholar 

  • Schwartz S, Palmer CG, Weaver DD, et al. (1983) Dicentric chromosome 13 and centromere inactivation. Hum Genet 63:332–337

    Article  PubMed  CAS  Google Scholar 

  • Sparrow AH (1965) Comparisons of the tolerances of higher plant species to acute and chronic exposure of ionizing radiation. In: Mechanisms of the dose rate effect of radiation at the genetic and cellular levels. Special suppl. Jpn J Genet 40:12–37

    CAS  Google Scholar 

  • Stahl-Maugé C, Hager HD, Schroeder TM (1978) The problem of partial endo- reduplication. Hum Genet 45:51–62

    Article  PubMed  Google Scholar 

  • Sutherland GR (1982) Heritable fragile sites on human chromosomes. VIII. Preliminary population cytogenetic data on the folic-acid-sensitive fragile sites. Am J Hum Genet 34:452–458

    PubMed  CAS  Google Scholar 

  • Sutherland GR (1988) Editorial: Fragile sites and cancer breakpoints — the pessimistic view. Cancer Genet Cytogenet 31:5–7

    Article  PubMed  CAS  Google Scholar 

  • Sutherland GR, Hecht F (1985) Fragile sites on human chromosomes, Oxford monographs on medical genetics 13. Oxford University Press, New York-Oxford

    Google Scholar 

  • Therman E, Kuhn EM (1976) Cytological demonstration of mitotic crossing-over in man. Cytogenet Cell Genet 17:254–267

    Article  PubMed  CAS  Google Scholar 

  • Therman E, Kuhn EM (1985) Incidence and origin of symmetric and asymmetric dicentrics in Bloom’s syndrome. Cancer Genet Cytogenet 15:293–301

    Article  PubMed  CAS  Google Scholar 

  • Therman E, Susman B (1990) The similarity of phenotypic effects caused by Xp and Xq deletions in the human female: a hypothesis. Hum Genet 85:175–183

    PubMed  CAS  Google Scholar 

  • Therman E, Sarto GE, Patau K (1974) Apparently isodicentric but functionally monocentric X chromosome in man. Am J Hum Genet 26:83–92

    PubMed  CAS  Google Scholar 

  • Therman E, Trunca C, Kuhn EM, et al. (1986) Dicentric chromosomes and the inactivation of the centromere. Hum Genet 72:191–195

    Article  PubMed  CAS  Google Scholar 

  • Tiepolo L, Maraschio P, Gimelli G, et al. (1979) Multibranched chromosomes 1, 9, and 16 in a patient with combined IgA and IgE deficiency. Hum Genet 51:127–137

    Article  PubMed  CAS  Google Scholar 

  • Weitkamp LR, Ferguson-Smith MA, Guttormsen SA, et al. (1978) The linkage relationships of marker sites on chromosomes no. 2 and 10. Ann Hum Genet 42:183–189

    Article  PubMed  CAS  Google Scholar 

  • Zakharov AF, Baranovskaya LI (1983) X-X chromosome translocations and their karyotype-phenotype correlations. In: Sandberg AA (ed) Cytogenetics of the mammalian X chromosome, Part B: X chromosome anomalies and their clinical manifestations. Liss, New York, pp 261–279

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Therman, E., Susman, M. (1993). Chromosome Structural Aberrations. In: Human Chromosomes. Springer Study Edition. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0529-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0529-3_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97871-0

  • Online ISBN: 978-1-4684-0529-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics