Skip to main content

Computer Modeling of Combustion Reactions in Flowing Systems with Transport

  • Chapter
  • First Online:
Combustion Chemistry

Abstract

In combustion systems, the strongly exothermic processes of fuel oxidation may give rise to localized reaction zones which propagate themselves into the unreacted material near them. There are two distinct mechanisms of propagation, deflagration and detonation. Deflagrations, travelling through the unburnt material at subsonic velocities, depend for their propagation on activation of adjacent material to a reactive condition by diffusive transport processes. Detonations, on the other hand, propagate at supersonic velocities by virtue of gasdynamic (shock) compression and heating of adjacent material, the shock wave itself being sustained by the energy release from the combustion process. In both cases the reaction zone propagates as a consequence of strong coupling between the combustion chemistry and the appropriate fluid mechanical process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Barnhill, R. E. (1977). “Representation and approximation of surfaces,” in Mathematical Software III, J. R. Rice, Ed., Academic Press, New York, p. 69.

    Chapter  Google Scholar 

  • Bechtel, J. H., Blint, R. J., Dasch, C. J., & Weinberger, D. A. (1981). Combustion and Flame, 42, 197.

    Article  CAS  Google Scholar 

  • Bledjian, L. (1973). Combustion and Flame, 20, 5.

    Article  CAS  Google Scholar 

  • Blottner, F. G. (1964). A.I.A.A. Journal, 2, 1921.

    CAS  Google Scholar 

  • Blottner, F. G. (1970). A.I.A.A. Journal, 8, 193.

    Google Scholar 

  • Blottner, F. G. (1975). Comp. Methods Appl. Mech. Eng., 6, 1.

    Article  Google Scholar 

  • Bonilla, C. F., Wang, S. J., & Weiner, H. (1956). Trans. Am. Soc. Mech. Engrs., 78, 1285.

    CAS  Google Scholar 

  • Boris, J. P. & Book, D. L. (1973). J. Comp. Phys., 11, 38.

    Article  Google Scholar 

  • Buddenberg, J. W. & Wilke, C. R. (1949). Ind. Eng. Chem., 41, 1345.

    Article  CAS  Google Scholar 

  • Chapman, S. & Cowling, T. G. (1970). The mathematical theory of non-uniform gases, 3rd ed., The University Press, Cambridge.

    Google Scholar 

  • Cherian, M. A., Rhodes, P., Simpson, R. J., & Dixon-Lewis, G. (1981a). Eighteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, p. 385.

    Google Scholar 

  • Cherian, M. A., Rhodes, P., Simpson, R. J., & Dixon-Lewis, G. (1981b). Phil. Trans. Roy. Soc. Lond., A 303, 181.

    Article  CAS  Google Scholar 

  • Cheung, R., Bromley, L. A. & Wilke, C. R. (1962). Am. Inst. Chem. Eng. Journal, 8, 221.

    Article  CAS  Google Scholar 

  • Chung, P. M. (1965). Advances in Heat Transfer, 2, 109.

    Article  CAS  Google Scholar 

  • Clifford, A. A., Gray, P., Mason, R. S., & Waddicor, J. I. (1982). Proc. Roy. Soc. Lond., A 380, 241.

    Article  CAS  Google Scholar 

  • Coffee, T. P. & Heimerl, J. M. (1981). Combustion and Flame, 43, 273.

    Article  CAS  Google Scholar 

  • Crowley, W. P. (1971). “FLAG: A Free Lagrange method for numerically simulating hydrodynamic flows in two dimensions,” in Proc. 2nd. International Conference on Numerical Methods in Fluid Dynamics, Springer-Verlag, New York.

    Google Scholar 

  • Curtiss, C. F. & Hirschfelder, J. O. (1949). J. Chem. Phys., 17, 550.

    Article  CAS  Google Scholar 

  • de Boer, C. (1978). A practical guide to splines, Springer-Verlag, New York.

    Book  Google Scholar 

  • Deuflhard, P. (1974). Numer. Math., 22, 289.

    Article  Google Scholar 

  • Dixon-Lewis, G. (1968). Proc. Roy. Soc. Lond., A 307, 111.

    Article  CAS  Google Scholar 

  • Dixon-Lewis, G. (1979a). Phil. Trans. Roy. Soc. Lond., A 292, 45.

    Article  Google Scholar 

  • Dixon-Lewis, G. (1979b). Combustion and Flame, 36, 1.

    Article  CAS  Google Scholar 

  • Dixon-Lewis, G. (1981). First Specialists’ Meeting (International) of The Combustion Institute, Section Francaise du “Combustion Institute,” p. 284.

    Google Scholar 

  • Dixon-Lewis, G. (1982). Communication to GAMM Workshop (Aachen, 1981) on “Numerical methods in laminar flame propagation,” N. Peters and J. Warnatz, Eds., Vieweg, Wiesbaden.

    Google Scholar 

  • Dixon-Lewis, G. (1983). Combustion Science and Technology, 34, 1.

    Article  CAS  Google Scholar 

  • Dixon-Lewis, G., Goldsworthy, F. A., & Greenberg, J. B. (1975). Proc. Roy. Soc. Lond., A 346, 261.

    Article  CAS  Google Scholar 

  • Dixon-Lewis, G. & Greenberg, J. B. (1975). J. Inst. Fuel, 132.

    Google Scholar 

  • Dixon-Lewis, G. & Islam, S. M. (1983). Nineteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, p. 283.

    Google Scholar 

  • Dixon-Lewis, G. & Simpson, R. J. (1977). Sixteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, p. 1111.

    Google Scholar 

  • Dixon-Lewis, G. & Williams, D. J. (1977). “The oxidation of hydrogen and carbon monoxide”, in Comprehensive Chemical Kinetics, C. H. Bamford and C. F. H. Tipper, Eds., vol. 17, Elsevier, Amsterdam, p. 1.

    Google Scholar 

  • Douglas, J. & Gunn, J. (1964). Numer. Math., 6, 428.

    Article  Google Scholar 

  • Enskog, D. (1917). “Kinetische Theorie der Vorgange in massig verdunnten Gasen,” Dissertation, Uppsala.

    Google Scholar 

  • Fay, J. A. & Riddell, F. R. (1958). J. Aeronaut. Sci., 25, 73.

    Google Scholar 

  • France, D. H. & Pritchard, R. (1976). J. Inst. Fuel, 49, 79.

    CAS  Google Scholar 

  • Fritts, M. J., Oran, E. S., & Boris, J. P. (1981). Lagrangian fluid dynamics for combustion modelling, NRL Memorandum Report 4570, Naval Research Laboratory, Washington, D.C.

    Google Scholar 

  • Gunther, R. & Janisch, G. (1972). Combustion and Flame, 19, 49.

    Article  Google Scholar 

  • Heimerl, J. M. & Coffee, T. P. (1980). Combustion and Flame, 39, 301.

    Article  CAS  Google Scholar 

  • Heimerl, J. M. & Coffee, T. P. (1982). Communication to GAMM Workshop (Aachen, 1981) on “Numerical methods in laminar flame propagation,” N. Peters and J. Warnatz, Eds., Vieweg, Wiesbaden.

    Google Scholar 

  • Hellund, E. J. (1940). Phys. Rev., 57, 319, 328.

    Article  CAS  Google Scholar 

  • Hellund, E. J. & Uehling, E. A. (1939). Phys. Rev., 56, 818.

    Article  CAS  Google Scholar 

  • Herzfeld, K. F. & Litowitz, T. A. (1959). Absorption and dispersion of ultrasonic waves, Academic Press, New York.

    Google Scholar 

  • Hilsenrath, J. et al. (1960). Tables of thermodynamic and transport properties, Pergamon Press, New York.

    Google Scholar 

  • Hindmarsh, A. C. (1976). Lawrence Livermore Laboratory Report UCID-30150.

    Google Scholar 

  • Hirschfelder, J. O. & Curtiss, C. F. (1949). Third Symposium (International) on Combustion, Williams and Wilkins Co., Baltimore, p. 121.

    Google Scholar 

  • Hirschfelder, J. O., Curtiss, C. F., & Bird, R. B. (1954). Molecular theory of gases and liquids, John Wiley & Sons, New York.

    Google Scholar 

  • Kestin, J. & Wang, H. E. (1960). Physica, 26, 575.

    Article  CAS  Google Scholar 

  • Landau, L. D. & Liftshitz, E. M. (1959). Fluid mechanics (trans. from Russian by J. B. Sykes and W. H. Reid), Pergamon Press, New York.

    Google Scholar 

  • Lawson, C. L. (1977). “Software for C1 surface absorption,” in Mathematical Software III, J. R. Rice, Ed., Academic Press, New York, p. 161.

    Chapter  Google Scholar 

  • Lees, L. (1956). Jet Propulsion, 26, 259.

    Article  Google Scholar 

  • Lund, C. M. (1978). Report UCRL-52504, Univ. of California, Lawrence Livermore Laboratory.

    Google Scholar 

  • Madsen, N. K. & Sincovec, R. F. (1977). PDECOL: General collocation software for partial differential equations, Lawrence Livermore Laboratory Preprint UCRL-78263 (Rev 1).

    Google Scholar 

  • Margolis, S. B. (1978). J. Comput. Phys., 27, 410.

    Article  CAS  Google Scholar 

  • Marquardt, D. W. (1963). J. Soc. Industrial and Applied Math., 11, 431.

    Article  Google Scholar 

  • Mason, E. A. & Monchick, L. (1962). J. Chem. Phys., 36, 1622.

    Article  CAS  Google Scholar 

  • Mason, E. A. & Saxena, S. C. (1958). Phys. Fluids, 1, 361.

    Article  CAS  Google Scholar 

  • Mason, E. A., Vanderslice, J. T., & Yos, J. M. (1959). Phys. Fluids, 2, 688.

    Article  CAS  Google Scholar 

  • McDonald, H. (1979). Progr. in Energy and Combustion Science, 5, 97.

    Article  CAS  Google Scholar 

  • Monchick, L. & Mason, E. A. (1961). J. Chem. Phys., 35, 1676.

    Article  CAS  Google Scholar 

  • Monchick, L., Munn, R. J., & Mason, E. A. (1966). J. Chem. Phys., 45, 3051.

    Article  CAS  Google Scholar 

  • Monchick, L., Pereira, A. N. G., & Mason, E. A. (1965). J. Chem. Phys., 42, 3241.

    Article  CAS  Google Scholar 

  • Monchick, L., Yun, K. S., & Mason, E. A. (1963). J. Chem. Phys., 39, 654.

    Article  Google Scholar 

  • Muckenfuss, C. & Curtiss, C. F. (1958). J. Chem. Phys., 29, 1273.

    Article  CAS  Google Scholar 

  • Oran, E. S. & Boris, J. P. (1981). Progr. in Energy and Combustion Science, 7, 1.

    Article  CAS  Google Scholar 

  • Patanker, S. V. & Spalding, D. B. (1970). Heat and mass transfer in boundary layers, Intertext Books, London.

    Google Scholar 

  • Picone, J. M. & Oran, E. S. (1980). Approximate equations for transport coefficients of multicomponent mixtures of real gases, NRL Memorandum Report 4384, Naval Research Laboratory, Washington, D.C.

    Google Scholar 

  • Powell, M. J. D. (1974). “Piecewise quadratic surface fitting for contour plotting,” in Software for Numerical Mathematics, D. J. Evans, Ed., Academic Press, London, p. 253.

    Google Scholar 

  • Richtmyer, R. D. & Morton, K. W. (1967). Difference methods for initial value problems, 2nd. ed., Interscience Publishers, New York.

    Google Scholar 

  • Roache, P. J. (1972). Computational fluid dynamics, Hermosa Publishers, Albuquerque, N. M.

    Google Scholar 

  • Schlichting, H. (1960) Boundary layer theory, 4th. ed. McGraw-Hill, New York.

    Google Scholar 

  • Schumaker, L. L. (1976). “Fitting surfaces to scattered data,” in Approximation Theory II, G. G. Lorentz, C. K. Chui, and L. L. Schumaker, Eds., Academic Press, New York, p. 203.

    Google Scholar 

  • Shifrin, A. S. (1959). Teploenergetika, 6, 22.

    Google Scholar 

  • Smooke, M. D. (1982). J. Comput. Phys., 48, 72.

    Article  CAS  Google Scholar 

  • Smoot, L. D., Hecker, W. C., & Williams, G. A. (1976). Combustion and Flame, 26, 323.

    Article  CAS  Google Scholar 

  • Spalding, D. B. & Stephenson, P. L. (1971). Proc. Roy. Soc. Lond., A 324, 315.

    Article  CAS  Google Scholar 

  • Spalding, D. B., Stephenson, P. L., & Taylor, R. G. (1971). Combustion and Flame, 17, 55.

    Article  Google Scholar 

  • Stephenson, P. L. & Taylor, R. G. (1973). Combustion and Flame, 20, 231.

    Article  CAS  Google Scholar 

  • Strang, G. & Fix, G. J. (1973). An analysis of the finite element method, Prentice-Hall, Englewood Cliffs, N. J.

    Google Scholar 

  • Svehla, R. A. (1962). Technical Report R-132, NASA, Washington, D.C.

    Google Scholar 

  • Taxman, N. (1958). Phys. Rev., 110, 1235.

    Article  CAS  Google Scholar 

  • Tsatsaronis, G. (1978). Combustion and Flame, 33, 217.

    Article  CAS  Google Scholar 

  • Tsuji, H. (1982). Progr. in Energy and Combustion Science, 8, 93.

    Article  CAS  Google Scholar 

  • Tsuji, H. (1983). ASME-JSME Thermal Engineering Conference, Honolulu, Hawaii, 4, 11.

    CAS  Google Scholar 

  • Tsuji, H. and Yamaoka, I. (1967). Eleventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, p. 979.

    Google Scholar 

  • Tsuji, H. and Yamaoka, I. (1969). Twelfth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, p. 997.

    Google Scholar 

  • Tsuji, H. and Yamaoka, I. (1971). Thirteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, p. 723.

    Google Scholar 

  • Waldmann, L. (1947). Z. Phys., 124, 175.

    Article  Google Scholar 

  • Waldmann, L. (1958). “Transporterscheinungen in Gasen von mittlerem Druck,” in Handbuch der Physik, S. Fliigge, Ed., Vol. 12, Springer-Verlag, Berlin.

    Google Scholar 

  • Wang Chang, C. S. & Uhlenbeck, G. E. (1951). Transport phenomena in polyatomic gases, University of Michigan Engineering Research Report No. CM-681.

    Google Scholar 

  • Wang Chang, C. S., Uhlenbeck, G. E., & de Boer, J. (1964). Studies in statistical mechanics, J. de Boer and G. E. Uhlenbeck, Eds., Vol. 2, John Wiley & Sons, New York.

    Google Scholar 

  • Warnatz, J. (1978a). Ber. Bunsenges. phys. Chem., 82, 193.

    Article  CAS  Google Scholar 

  • Warnatz, J. (1978b). Ber. Bunsenges. phys. Chem., 82, 643.

    Article  CAS  Google Scholar 

  • Warnatz, J. (1978c). Ber. Bunsenges. phys. Chem., 82, 834.

    Article  CAS  Google Scholar 

  • Warnatz, J. (1979). Ber. Bunsenges. phys. Chem., 83, 950.

    Article  CAS  Google Scholar 

  • Warnatz, J. (1981). Eighteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, p. 369.

    Google Scholar 

  • Warnatz, J. (1982). Communication to GAMM Workshop (Aachen, 1981) on “Numerical methods in laminar flame propagation,” N. Peters and J. Warnatz, Eds., Vieweg, Wiesbaden.

    Google Scholar 

  • Westbrook, C. K. (1980). Combustion Science and Technology, 23, 191.

    Article  CAS  Google Scholar 

  • Westbrook, C. K. & Dryer, F. L. (1980). Combustion and Flame, 37, 171.

    Article  CAS  Google Scholar 

  • Wilde, K. A. (1972). Combustion and Flame, 18, 43.

    Article  CAS  Google Scholar 

  • Williams, F. A. (1965). Combustion theory, Addison-Wesley, Reading, Mass.

    Google Scholar 

  • Yanenko, N. N. (1971). The method of fractional steps, Springer-Verlag, New York.

    Book  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag New York Inc.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dixon-Lewis, G. (1984). Computer Modeling of Combustion Reactions in Flowing Systems with Transport. In: Gardiner, W.C. (eds) Combustion Chemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0186-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0186-8_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0188-2

  • Online ISBN: 978-1-4684-0186-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics