Skip to main content

Deposit-Feeders, Their Resources, and the Study of Resource Limitation

  • Chapter
Ecological Processes in Coastal and Marine Systems

Part of the book series: Marine Science ((MR,volume 10))

Abstract

Deposit-feeding invertebrates consume particles, digest and assimilate a fraction of the microbial community living on those particlesand often defecate the particles as compact fecal pellets. The niche of deposit-feeders may therefore be defined as: (1) particle size spectrum ingested(2) depth of feeding and living position below the sediment-water interface(3) range of sediments over which the deposit-feeder occurs, (4) possible differences in utilization of microorganisms. Because variation in occurrence of deposit-feeders may be simply related to at least the first 3 niche parameters by simple morphological features such as inhalent siphonal opening and size of buccal apparatus, one can imagine character evolution related to ecologically significant resource parameters.

Laboratory microcosm studies show that the following parameters affect resource availability for the mobile deposit-feeding genus Hydrobia: (1) Fecal pellet breakdown. Snails avoid ingestion of intact fecal pellets. (2) Renewal of microbial resources such as diatoms and bacteria. (3) Space. Hydrobia individuals feed more slowly under crowded conditions and increase emigration. (4) Particle size. Feeding rate decreases with increasing particle diameter3 and switching to scraping occurs on large particles. Experiments show that resource limitation by renewable resources affects Hydrobiids within the range of maximal field densities. A theoretical model of resource renewal considering microbial recovery and fecal pellet breakdown permits a prediction of carrying capacity in field populations. Thus multifactorial microcosm studies combined with theoretical models permit the assessment of the importance of competition as a potential evolutionary force.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anderson, A., 1971. Intertidal activity, breeding and the floating habit of Hydrobia ulvae in the Ythan estuary, J. Mar. Biol. Assoc. U. K. 51: 423–437.

    Article  Google Scholar 

  • Bader, R. G., 1954. The role of organic matter in determining the distribution of bivalves in sediments, J. Mar. Res. 13: 32–47.

    Google Scholar 

  • Barsdate, R. J., R. T. Prentki, and T. Fenchel, 1974. Phosphorous cycle of model ecosystems: significance for decomposer food chains and effect of bacterial grazers, Oikos 25: 239–251.

    Article  CAS  Google Scholar 

  • Bobbie, R. J., S. J. Morrison, and D. C. White, 1978. Effects of substrate biodegradability on the mass and activity of the associated estuarine microbiota, Appl. Environ. Microbiol. 35: 179–184.

    CAS  Google Scholar 

  • Calow, P., 1975. The feeding strategies of two freshwater gastropods, Ancylus fluviatilis Müll. and Planorbis contortus Linn. (Pulmonata), in terms of ingestion rates and absorption efficiencies, Oecologia (Berl.) 19: 33–49.

    Article  Google Scholar 

  • Christiansen, F. B. and T. Fenchel, 1977. Theories of Populations in Biological Communities, 144 pp., Springer, Berlin.

    Book  Google Scholar 

  • Dale, N. G., 1974. Bacteria in intertidal sediments: factors rated to their distribution, Limnol. Oceanogr. 19: 509–518.

    Article  Google Scholar 

  • Dayton, P. K., 1979. Ecology: a science and a religion, In: Ecological Processes in Coastal and Marine Systems, edited by R. J. Livingston, Plenum, N. Y. (this volume).

    Google Scholar 

  • Fenchel, T., 1970. Studies on the decomposition of organic detritus derived from the turtle grass Thalassia testudinum, Limnol. Oceanogr. 15: 14–20.

    Google Scholar 

  • Fenchel, T., 1975a. Factors determining the distribution patterns of mud snails (Hydrobiidae), Oecologia (Berl.) 20: 1–17.

    Article  Google Scholar 

  • Fenchel, T., 1975b. Character displacement and coexistence in mud snails (Hydrobiidae), Oecologia (Berl.) 20: 19–32.

    Article  Google Scholar 

  • Fenchel, T. and L. H. Kofoed, 1976. Evidence for exploitative interspecific competition in mud snails (Hydrobiidae), Oikos 27: 367–376.

    Article  Google Scholar 

  • Frankenberg, D. and K. L. Smith, 1967. Coprophagy in marine animals, Limnol. Oceanogr. 12: 443–450.

    Article  Google Scholar 

  • Frankenberg, D., S. L. Coles, and R. E. Johannes, 1967. The potential trophic significance of Callianassa major fecal pellets, Limnol. Oceanogr. 12: 113–120.

    Article  Google Scholar 

  • Hargrave, B. T., 1970a. The effect of deposit-feeding amphipods on the metabolism of benthic microflora, Limnol. Oceanogr. 15: 21–30.

    Google Scholar 

  • Hargrave, B. T., 1970b. The utilization of the benthic microflora by Eyalella azteca, J. Anim. Ecol. 39: 427–437.

    Article  Google Scholar 

  • Haven, D. and R. Morales-Alamo, 1966. Aspects of biodeposition by oysters and other invertebrate filter-feeders, Limnol. Oceanogr. 11: 487–498.

    Article  Google Scholar 

  • Holme, N. A., 1950. Population dispersion in Tellina tenuis da Costa, J. Mar. Biol. Assoc. U. K. 29: 267–280.

    Article  Google Scholar 

  • Hughes, T. G., 1973. Deposit feeding in Abra tenuis (Bivalvia: Tellinacea), J. Zool. 171: 499–512.

    Article  Google Scholar 

  • Hutchinson, G. E., 1957. Concluding remarks, Cold Spring Harbor Symp. Quant. Biol. 22: 415–427.

    Article  Google Scholar 

  • Hylleberg, J., 1976. Resource partitioning on basis of hydrolytic enzymes in deposit-feeding mud snails (Hydrobiidae). II. Studies on niche overlap, Oecologia (Berl.) 23: 115–125.

    Article  Google Scholar 

  • Johannes, R. E. and M. Satomi, 1967. Composition and nutritive value of fecal pellets of a marine crustacean, Limnol. Oceanogr. 11: 191–197.

    Article  Google Scholar 

  • Jørgensen, B. B., 1977. Bacterial sulfate reduction within reduced microniches of oxidized marine sediments, Mar. Biol. 41: 7–17.

    Article  Google Scholar 

  • Kofoed, L. H., 1975a. The feeding biology of Hydrobia ventrosa (Montagu). I. The assimilation of different components of the food, J. Exp. Mar. Biol. Ecol. 19: 233–241.

    Article  Google Scholar 

  • Kofoed, L. H., 1975b. The feeding biology of Hydrobia ventrosa (Montagu). II. Allocation of the components of the carbon budget and the significance of the secretion of dissolved organic material, J. Exp. Mar. Biol. Ecol. 19: 243–256.

    Article  CAS  Google Scholar 

  • Levinton, J. S., 1977. The ecology of deposit-feeding communities: Quisset Harbor, Massachusetts. In: Ecology of Marine Benthoss edited by B. C. Coull, 191–228, Univ. of S. Carolina Press, Columbia, S. C.

    Google Scholar 

  • Levinton, J. S., 1979. The effect of density upon deposit- feeding populations: movement, feeding and floating of Hydrobia ventrosa Montagu ( Gastropoda: Prosobranchia), submitted to Oecologia.

    Google Scholar 

  • Levinton, J. D. and R. K. Bambach, 1970. Some ecological aspects of bivalve mortality patterns, Amer. J. Sci. 268: 97–112.

    Article  Google Scholar 

  • Levinton, J. S. and R. K. Bambach, 1975. A comparative study of Silurian and recent deposit-feeding bivalve communities, Paleobiology 1: 97–124.

    Google Scholar 

  • Levinton, J. S. and G. R. Lopez, 1977. A model of renewable resources and limitation of deposit-feeding benthic populations, Oecologia (Berl.) 31: 177–190.

    Article  Google Scholar 

  • Levinton, J. S., G. R. Lopez, H. H. Lassen, and U. Rahn, 1977. Feedback and structure in deposit-feeding marine benthic communities, 11th Europ. Symp. Mar. Biol. edited by B. F. Keegan, P. O. Ceidigh, and P. J. S. Boaden, 409–416, Pergamon, Oxford.

    Google Scholar 

  • Lopez, G. R. and J. S. Levinton, 1978. The availability of microorganisms attached to sediment particles as food for Hydrobia ventrosa Montagu (Gastropoda: Prosobranchia), Oecologia (Berl.) 32: 236–275.

    Article  Google Scholar 

  • Lopez, G. R., J. S. Levinton, and L. B. Slobodkin, 1977. The effect of grazing by the detritivore Orohestia grillus on Spartina litter and its associated microbial community. Oecologia (Berl.) 30: 111–127.

    Article  Google Scholar 

  • Longbottom, M. R., 1970. The distribution of Arenioola marina (L.) with particular reference to the effect of particle size and organic matter of the sediments, J. Exp. Mar. Biol. Ecol. 5: 138–157.

    Article  Google Scholar 

  • Newell, R., 1962. Behavioural aspects of the ecology of Peringia (= Eydrobia) ulvae (Pennant) (Gasteropoda, Prosobranchia), Proc. Zool. Soc. Lond. 140: 49–75.

    Google Scholar 

  • Newell, R., 1964. Some factors controlling the upstream distribution of Eydrobia ulvae (Pennant) (Gastropoda, Prosobranchia), Proc. Zool. Soc. Lond. 142: 85–106.

    Google Scholar 

  • Newell, R. C., 1965. The role of detritus in the nutrition of two marine deposit feeders, the prosobranch Eydrobia ulvae and the bivalve Macoma balthica, Proc. Zool. Soc. Lond. 144: 25–45.

    Google Scholar 

  • Nicolaisen, W. and E. Kanneworf, 1969. On the burrowing and feeding habits of the amphipods Bathyporeia pilosa Lindstrom and Bathyporeia sarsi Watkin, Ophelia 6: 231–250.

    Google Scholar 

  • Peterson, C. H., 1977. Competitive organization of the soft- bottom macrobenthic communities of southern California lagoons, Mar. Biol. 43: 343–359.

    Article  Google Scholar 

  • Rahn, V., 1975. Phosphorous Turnover in Relation to Decomposition of Detritus in Aquatic Microcosms, Dissertation, Institute of Ecology and Genetics, University of Aarhus, Denmark (in Danish).

    Google Scholar 

  • Rhoads, D. C., 1967. Biogenic reworking of intertidal and subtidal sediments in Barnstable Harbor and Buzzards Bay, Massachusetts, J. Geol. 75: 461–474.

    Article  Google Scholar 

  • Rhoads, D. C., 1973. Organism-sediment relationships on the muddy sea floor, Oceanogr. Mar. Biol. Ann. Rev. 12: 263–300.

    Google Scholar 

  • Rhoads, D. C. and D. K. Young, 1970. The influence of deposit- feeding organisms on sediment stability and community trophic structure, J. Mar. Res. 28: 150–178.

    Google Scholar 

  • Sanders, H. L., 1956. Oceanography of Long Island Sound, 1952–1954. X. Biology of marine bottom communities. Bingham Oceanogr. Coll. Bull. 15: 345–414.

    Google Scholar 

  • Sanders, H. L., 1958. Benthic studies in Buzzards Bay. I. Animal-sediment relationships, Limnol. Oceanogr. 3: 245–258.

    Article  Google Scholar 

  • Schneider, D. C., 1978. Equalisation of prey number by migratory shorebirds, Nature 271: 353–354.

    Article  Google Scholar 

  • Tenore, K. R., 1977a. Growth of the polychaete Capitella capitata cultured in different levels of detritus derived from various sources, Limnol. Oceanogr. 22: 936–941.

    Article  Google Scholar 

  • Tenore, K. R., 1977b. Utilization of aged detritus derived from different sources by the polychaete, Capitella capitata. Mar. Biol. 44: 51–55.

    Article  Google Scholar 

  • Tiejen, J. H., 1969. The ecology of shallow water meiofauna in two New England estuaries, Oecologia (Berl.) 2: 251–291.

    Article  Google Scholar 

  • Tunnicliffe, V. and M. J. Risk, 1977. Relationships between the bivalve Macoma balthica and bacteria in intertidal sediments: Minas basin Bay of Fundy, J. Mar. Res. 35: 499–507.

    Google Scholar 

  • Verwey, J., 1952. On the ecology of distribution of cockle and mussel in the Dutch Waddensee, their role in sedimentation, and the source of their food supply with a short review of the feeding behavior of bivalve mollusks, Arch. Neerl. Zool. 10: 172–239.

    Google Scholar 

  • Virnstein, R. W., 1977. The importance of predation by crabs and fishes on benthic infauna in Chesapeake Bay, Ecology 58: 1199–1217.

    Article  Google Scholar 

  • Whitlatch, R. B., 1974. Food resource partitioning in the deposit-feeding polychaete Pectinaria gouldii, Biol. Bull. 147: 227–235.

    Article  Google Scholar 

  • Whitlatch, R. B., 1976. Methods of resource allocation in marine deposit-feeding communities, Amer. Zool. 16: 195.

    Google Scholar 

  • Wieser, W., 1960. Benthic studies in Buzzards Bay. II. The meiofauna, Limnol. Oceanogr. 5: 121–137.

    Article  Google Scholar 

  • Woodin, S. A., 1974. Polychaete abundance patterns in a marine soft-sediment environment: the importance of biological interactions, Ecol. Monogr. 44: 171–187.

    Article  Google Scholar 

  • Yingst, J. Y., 1976. The utilization of organic matter in shallow marine sediments by an epibenthic deposit-feeding Holothurian, J. Exp. Mar. Biol. Ecol. 23: 55–69.

    Article  CAS  Google Scholar 

  • Young, D. K., M. A. Buzas, and M. W. Young, 1976. Species densi¬ties of macrobenthos associated with seagrass in a field experimental study of predation, J. Mar. Res. 34: 577–592.

    Google Scholar 

  • Zobell, C. E. and C. B. Feltham, 1938. Bacteria as food for certain marine invertebrates, J. Mar. Res. 1: 312–327.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Levinton, J.S. (1979). Deposit-Feeders, Their Resources, and the Study of Resource Limitation. In: Livingston, R.J. (eds) Ecological Processes in Coastal and Marine Systems. Marine Science, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9146-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9146-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9148-1

  • Online ISBN: 978-1-4615-9146-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics