Skip to main content

Effects of Surface Composition, Water Column Chemistry, and Time of Exposure on the Composition of the Detrital Microflora and Associated Macrofauna in Apalachicola Bay, Florida

  • Chapter
Ecological Processes in Coastal and Marine Systems

Part of the book series: Marine Science ((MR,volume 10))

Abstract

In experiments where measures of the detrital micro floral biomass, morphology, and activity were compared to the mass, numbers, and diversity of the associated macrofauna on different surfaces (artificial and natural plant detritus) incubated in baskets at the same station in a river-dominated estuary, the changes in microbial mass, morphology, and activity were not correlated with changes in the macrofaunal population attracted to baskets. In experiments where the different surfaces were incubated at two different stations, the gross measures of microbial biomass (lipid phosphate, poly-β-hydroxybutyrate), nutritional history, and respiratory activity were correlated with the particular substrate used, whereas the macrofaunal population was significantly correlated with the water chemistry but not with the gross measures of the detrital microflora.

However, when fine structure of the detrital microbial population was examined by comparison among its components of the proportions of the lipid fatty acids, highly significant correlations between the presence of particular bacterial components of the microflora and the numbers, biomass, and species richness of the detritus-as so dated macrofauna were evident. Clearly, subtle differences in the population structure of the detrital microflora are associated with the mass and structure of the macro faunal detrital food web.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bader, R. G., 1954. The role of organic matter in determining the distribution of bivalves in sediments, J. Mar. Res. 13: 31–47.

    Google Scholar 

  • Bobbie, R. J., S. J. Morrison, and D. C. White, 1978. Effects of substrate biodegradability on the mass and activity of the associated estuarine microbiota, Appl. Environ. Microbiol. 35: 179–184.

    PubMed  CAS  Google Scholar 

  • Darnell, R. M., 1967. The organic detritus problem, In: Estuaries, edited by G. H. Lauff, 374–375, Publ. # 83, A.A.A.S., Washington, D. C.

    Google Scholar 

  • Dawes, E. A. and P. J. Senior, 1973. The role and regulation of energy reserve polymers in microorganisms, Adv. Miorob. Physiol. 10: 135–266.

    Article  CAS  Google Scholar 

  • Ekman, S., 1947. Uber die Festigheit der marinen Sediments als faktor der Tierverbreitung, ein Beitrag zur Associations- Analyse, Zool. Biol. Univ. Uppsala, Sweden 25: 1–20.

    Google Scholar 

  • Erwin, J. A., 1973. Fatty acids in eukaryotic microorganisms, In: Lipids and Biomembranes of Eukaryotic Microorganisms, edited by J. A. Erwin, 41–143, Academic Press, New York.

    Google Scholar 

  • Feeny, P., 1976. Plant apparency and chemical defense, In: Biochemical Interaction Between Plants and Insects, Vol. 10, edited by J. W. Wallace and R. L. Mansell, 1–40, Plenum Press, New York.

    Google Scholar 

  • Fenchel, T. M. and B. B. Jorgensen, 1977. Detritus food chains of aquatic ecosystems: The role of bacteria, Adv. Microbial Ecol. 1: 1–58.

    CAS  Google Scholar 

  • Herron, J. S., J. D. King, and D. C. White, 1978. Recovery of poly-β-hydroxybutyrate from estuarine microflora, Appl. Environ. Microbiol. 35: 251–257.

    PubMed  CAS  Google Scholar 

  • Hurlbert, S. H., 1971. The nonconcept of species diversity: a critique and alternative parameters, Ecology 52: 577–586.

    Article  Google Scholar 

  • Jeffries, H. P., 1972. Fatty acid ecology of a tidal marsh, Limnol. Oceanogr. 17: 433–440.

    Article  CAS  Google Scholar 

  • Jeffries, H. P., 1975. Diets of juvenile Atlantic menhaden (Brevoortia tyrannus) as determined from fatty acid composition of gut contents, J. Fish. Res. Bd Can. 32: 587–592.

    Article  CAS  Google Scholar 

  • Jensen, P. 3., 1919. Valuation of the Limfjord. I. Studies on the fish food in the Limfjord 1909–1917, its quantity, variation, and animal production, Rep. Danish Biol. Stat. Univ. Copenhagen, Denmark 26: 1–44.

    Google Scholar 

  • Kates, M., 1964. Bacterial lipids, In: Advances in Lipid Research 2, edited by R. Paoletti and D. Kritchevsky, 17–90, Academic Press, New York.

    Google Scholar 

  • King, J. D. and D. C. White, 1977. Muramic acid as a measure of microbial biomass in estuarine and marine samples, Appl. Environ. Microbiol. 33: 777–783.

    PubMed  CAS  Google Scholar 

  • King, J. D., D. C. White, and C. W. Taylor, 1977. Use of lipid composition and metabolism to examine structure and activity of estuarine detrital microflora, Appl. Environ. Microbiol. 33: 1177–1183.

    PubMed  CAS  Google Scholar 

  • Knivett, V. A. and J. Cullen, 1965. Some factors affecting cyclopropane acid formation in Escherichia coli, Biochem. J. 96: 771–776.

    PubMed  CAS  Google Scholar 

  • Korn, E. D., C. L. Greenblatt, and A. M. Lees, 1965. Synthesis of unsaturated fatty acids in the slime mold Physarum polycephalwn and the zooflagellates Leishmania tarentolae, Trypanosoma lewisi, and Crithidia sp.: a comparative study, J. Lipid Res. 6: 43–50.

    PubMed  CAS  Google Scholar 

  • Law, J. H., H. Zalkin, and T. Kaneshiro, 1963. Transmethylation reactions in bacterial lipids, Biochim. Biophys. Acta 70: 143–151.

    Article  CAS  Google Scholar 

  • Lechevalier, M. P., 1977. Lipids in bacterial taxonomy - a taxonomist’s view, CRC Critical Reviews in Microbiol. 7: 109–210.

    Article  Google Scholar 

  • Livingston, R. J., 1978. Short- and Long-term Effects of Forestry Operations on Water Quality and the Biota of the Apalachicola Estuary (North Florida, U.S.A.), Final report, Florida Sea Grant College.

    Google Scholar 

  • Livingston, R. J., R. L. Iverson, and D. C. White, 1976. Energy Relationships and the Productivity of Apalachicola Bay. Final report, Florida Sea Grant College.

    Google Scholar 

  • Margalef, R., 1958. Information theory in ecology, Gen. Systematics 3: 36–71.

    Google Scholar 

  • Marr, A. G. and J. L. Ingraham, 1962. Effect of temperature on the composition of the fatty acids in Escherichia coli, J. Bacteriol. 84: 1260–1267.

    PubMed  CAS  Google Scholar 

  • Meyer, H. and G. C. Holz, 1966. Biosynthesis of lipids by kinetoplastid flagellates, J. Biol. Chem. 241: 5000–5007.

    PubMed  CAS  Google Scholar 

  • Morman, M. R. and D. C. White, 1970. Phospholipid metabolism during penicillinase production in Bacillus licheniformis, J. Bacteriol. 104: 247–253.

    PubMed  CAS  Google Scholar 

  • Morrison, S. J., J. D. King, R. J. Bobbie, R. E. Bechtold, and D. C. White, 1977. Evidence for microfloral succession on allochthonous plant litter in Apalachicola Bay, Florida, USA, Marine Biol. 41: 229–240.

    Article  CAS  Google Scholar 

  • Nickels, J. S., J. D. King, and D. C. White, 1979. Poly-β-hydroxybutyrate accumulation as a measure of unbalanced growth of the estuarine detrital microflora, Appl. Environ. Microbiol. 37: 459–465.

    PubMed  CAS  Google Scholar 

  • Odum, W. E., 1970. Pathways of Energy Flow in a South Florida Estuary, Ph.D. Dissertation, University of Miami.

    Google Scholar 

  • Parker, P. L., C. van Baalen, and L. Maurer, 1967. Fatty acids in eleven species of blue-green algae: geochemical significance, Science 155: 707–708.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, C. G., 1913. Valuation of the sea. II. The animal communities of the sea bottom and their importance for marine zoogeography, Rep. Danish Biol. Stat. Univ. Copenhagen, Denmark 21: 1–44.

    Google Scholar 

  • Petersen, C. G., 1918. The sea bottom and its production of fish food. A survey of the work done in connection with the valuation of the Danish waters from 1883–1917, Rep. Danish Biol. Stat. Univ. Copenhagen, Denmark 25: 1–62.

    Google Scholar 

  • Rowe, G. T. and R. J. Menzies, 1969. Zonation of large benthic invertebrates in the deep sea off the Carolinas, Deep Sea Res. 16: 531–537.

    Google Scholar 

  • Salton, M., 1960. Microbial Cell Walls, 94 pp., John Wiley and Sons, New York.

    Google Scholar 

  • Schelske, C. L., and E. P. Odum, 1962. Kechanisms maintaining high productivity in Georgia estuaries, Proc. Gulf Carib. Fish. Inst. 14th Ann. Sess.: 75–80.

    Google Scholar 

  • Schultz, D. M. and J. G. Quinn, 1973. Fatty acid composition of organic detritus from Spartina altemiflora, Estuarine and Coastal Marine Science 1: 177–190.

    Article  Google Scholar 

  • Shannon, E. C. and W. Weaver, 1963. The Mathematical Theory of Communication, 125 pp., Univ. Illinois Press, Urbana.

    Google Scholar 

  • Shaw, N., 1974. Lipid composition as a guide to the classification of bacteria, Adv. Appl. Microbiol. 17: 63–108.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, P. J. and J. H. Law, 1966. Biosynthesis of cyclopropane compounds. IX. Structural and stereochemical requirements for the cyclopropane synthetase substrate, J. Biol. Chem. 241: 5013–5018.

    CAS  Google Scholar 

  • Tyrrell, D., 1968. The branched-chain fatty acids in Conidiobius denaesporus Drechsl, Lipids 3: 368–372.

    Article  PubMed  CAS  Google Scholar 

  • White, D. C., R. J. Bobbie, J. S. Rerron, J. D. King, and S. J. Morrison, 1979a. Biochemical measurements of microbial mass and activity from environmental samples, In: Native Aquatic Bacteria, Enumeration, Activity and Ecology ASTM STP 695; edited by J. W. Casterton and R. R. Colwell, in press.

    Google Scholar 

  • White, D. C., R. J. Bobbie, J. D. King, J. Nickels, and P. Amoe, 1979b. Lipid analysis of sediments for microbial biomass and community structure, In: Methodology for Biomass Determinations and Microbial Activities in Sediments edited by C. D. Litchfield and P. L. Seyfried, American Society for Testing and Materials, ASTM STP 673, in press.

    Google Scholar 

  • White, D. C., R. J. Bobbie, S. J. Morrison, D. K. Oosterhof, C. W. Taylor, and D. A. Meeter, 1977. Determination of microbial activity of estuarine detritus by relative rates of lipid biosynthesis, Limnol. Oceanogr. 22: 1089–1099.

    Article  CAS  Google Scholar 

  • White, D. C. and R. H. Cox, 1967. Identification and localization of the fatty acids in Haemophilus parainfluenzae, J. Bacteriol. 93: 1079–1088.

    PubMed  CAS  Google Scholar 

  • White, D. C., W. M. Davis, J. S. Nickels, J. D. King, and R. J. Bobbie, 1979c. Determination of the sedimentary microbial biomass by extractible lipid phosphate, Oecologia 40: 51–62.

    Article  Google Scholar 

  • White, D. D. and A. N. Tucker, 1969. Phospholipid metabolism during changes in the proportions of membrane-bound respiratory pigments in Haemophilus parainfluenzae, J. Bacteriol. 97: 199–209.

    PubMed  CAS  Google Scholar 

  • Wieser, W., 1960. Benthic studies in Buzzards Bay. II. The meiofauna, Limnol. Ooeanogr. 5: 121–137.

    Article  Google Scholar 

  • Wigley, R. L. and A. D. McIntyre, 1964. Some quantitative comparison of offshore meiobenthos and macrobentha, Limnol. Ooeanogr. 9: 485–493.

    Article  Google Scholar 

  • Williams, R. B. and L. K. Thomas, 1967. The standing crop of benthic animals in a North Carolina estuarine area, J. Elisha Mitchell Sci. Soc. 93: 135–139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

White, D.C., Livingston, R.J., Bobbie, R.J., Nickels, J.S. (1979). Effects of Surface Composition, Water Column Chemistry, and Time of Exposure on the Composition of the Detrital Microflora and Associated Macrofauna in Apalachicola Bay, Florida. In: Livingston, R.J. (eds) Ecological Processes in Coastal and Marine Systems. Marine Science, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9146-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9146-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9148-1

  • Online ISBN: 978-1-4615-9146-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics