Skip to main content

Magnetic Effects in Cellular and Molecular Systems

  • Chapter
Magnetic Field Effect on Biological Systems

Abstract

Chalazonitis and co-workers1 reported in 1970 that isolated frog rod outer segments in aqueous suspension can be oriented by a homogeneous magnetic field of 10 kG. The equilibrium orientation is parallel to the applied field. Furthermore, the two ends of a rod appear equivalent in a magnetic field. This latter observation suggested that the effect is either paramagnetic or diamagnetic. In either case, the effect can be due to (a) magnetic anisotropy, (b) “form” anisotropy, or (c) inhomogeneity of the applied field. The second and third mechanisms are ruled out, because the corresponding estimated magnetic potential (orientation) energy is not large enough to overcome thermal fluctuation. Numerical estimation based on the mechanism of magnetic anisotropy indicates that it is impossible to orient individual molecules in a rod with a field strength of 10 kG. However, two major molecular constituents, visual pigment rhodopsin and phospholipid, are oriented along the axial direction in a rod. If either molecule possesses a small anisotropy, the anisotropy will be additively summed in a rod and increased by a factor of 3 X 109 (rhodopsin) or 1013 (phospholipid). The crucial parameter is the summed anisotropy, which is the sum of the anisotropy of all the individual oriented anisotropic molecules, ∑ViΔXi, where ΔXi and Vi are the anisotropy of the volume susceptibility and the total effective volume of species i, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chalazonitis, N., Chagneux, R., and Arvanitaki, A., 1970. Rotation des segments externes des photorécepteurs dans le champ magnétique constant. C. R. Aead. Sci. Ser. D. 271:130–133.

    Google Scholar 

  2. Hong, F. T., Mauzerall, D., and Mauro, A., 1971. Magnetic anisotropy and the orientation of retinal rods in a homogeneous magnetic field. Proc. Natl. Acad. Sci. USA 68:1283–1285.

    Article  ADS  Google Scholar 

  3. Hong, F. T., 1973. On the importance of being ordered. II. Diamagnetic anisotropy in ordered biological structures. Ph.D. dissertation, The Rockefeller University, New York, Appendix 111:157–182.

    Google Scholar 

  4. Hong, F. T., 1977. Photoelectric and magneto-orientation effects in pigmented biological membranes. J. Colloid Interface Sci. 58:471–497.

    Article  Google Scholar 

  5. Becker, J. F., Trentacosti, F., and Geacintov, N. E., 1978. A linear dichroism study of the orientation of aromatic protein residues in magnetically oriented bovine rod outer segments. Photochem. Photobiol. 27:51–54.

    Article  Google Scholar 

  6. Chabre, M., 1978. Diamagnetic anisotropy and orientation of helix in frog rhodopsin and meta II intermediate. (Submitted for publication.)

    Google Scholar 

  7. Chagneux, R. and Chalazonitis, N., 1972. Evaluation de Tanisotropie magnétique des cellules multimembranaires dans un champ magnétique constant (segments externes des bâtonnets de la rétine de grenouille). C. R. Acad. Sci. Ser. D. 274:317–320.

    Google Scholar 

  8. Chagneux, R., Chagneux, H., and Chalazonitis, N., 1977. Decrease in magnetic anisotropy of external segments of the retinal rods after a total photolysis. Biophys. J. 18:125–127.

    Article  ADS  Google Scholar 

  9. Chabre, M., 1975. X-ray diffraction studies of retinal rods. I. Structure of the disc membrane, effect of illumination. Biochim. Biophys. Acta 382:322–335.

    Article  Google Scholar 

  10. Chabre, M., Saibil, H., and Worcester, D. L., 1975. Neutron diffraction studies of oriented retinal rods. Brookhaven Symp. Biol. 27(III),77–85.

    Google Scholar 

  11. Wiltschko, W. and Wiltschko, R., 1972. Magnetic compass of European robins. Science 176:62–64.

    Article  ADS  Google Scholar 

  12. Geacintov, N. E., Van Nostrand, F., Becker, J. F., and Tinkel, J. B., 1972. Magnetic field induced orientation of photosynthetic systems. Biochim. Biophys. Acta 267:65–79.

    Article  Google Scholar 

  13. Becker, J. F., Geacintov, N. E., and Swenberg, C. E., 1978. Photo-voltages in suspensions of magnetically oriented chloroplasts. Biochim. Biophys. Acta 503:545–554.

    Article  Google Scholar 

  14. Gagliano, A. G., Geacintov, N. E., and Breton, J., 1977. Orientation and linear dichroism of chloroplasts and sub-chloroplast fragments oriented in an electric field. Biochim. Biophys. Acta 461:460–474.

    Article  Google Scholar 

  15. Maling, J. E., Weissbluth, M., and Jacobs, E. E., 1965. Enzyme-substrate reactions in high magnetic fields. Biophys. J. 5:761–716.

    Article  Google Scholar 

  16. Rabinovitch, B., Maling, J. E., and Weissbluth, M., 1967. Enzyme-substrate reactions in very high magnetic fields. I. Biophys. J. 7:187–204.

    Article  Google Scholar 

  17. Rabinovitch, B., Maling, J. E., and Weissbluth, M., 1967. Enzyme-substrate reactions in very high magnetic fields. II. Biophys. J. 7:319–327.

    Article  Google Scholar 

  18. Komolova, G. S., Erygin, G. D., Vasileva, T. B., and Egorov, I. A., 1972. Effect of a high strength constant magnetic field on enzymatic hydrolysis of nucleic acids. Dokl. Akad. Nauk SSSR Ser. Biol. 204:995–997.

    Google Scholar 

  19. Malinin, G. L, Gregory, W. D., Morelli, L., Sharma, V. K., and Houck, J. C, 1976. Evidence of morphological and physiological transformation of mammalian cells by strong magnetic fields. Science 194:844–846.

    Article  ADS  Google Scholar 

  20. Nath, R. and Schulz, R. J., 1978. Modification of electron beam dose distributions by transverse magnetic fields. Medical Physics 5:226–230.

    Article  ADS  Google Scholar 

  21. Rockwell, Sara, 1977. Influence of a 1400 gauss magnetic field on the radiosensitivity and recovery of EMT6 cells in vitro. Int. J. Radiât. Biol. 31:153–160.

    Article  Google Scholar 

  22. Levine, M. A. and Ettienne, E., 1978. Coenzyme-dependent suppression of 2,2-PDS induced contractions in Spirostomwn. Microbios Letters 20:81–93.

    Google Scholar 

  23. Ettienne, E. and Dikstein, S., 1974. Contractility in Spirostomum provides for nonelectrogenic calcium regulation through energy-dissipative metabolic processes in the absence of membrane excitability. Nature (London) 250:782–784.

    Article  ADS  Google Scholar 

  24. Dikstein, S. and Hawkes, R. B., 1976. Metabolically regulated cyclical contractions in microinjected Spirostomum: a pharmacological study. Experientia 32:1029–1031.

    Article  Google Scholar 

  25. Ettienne, E. M., 1970. Control of contractility in Spirostomum by dissociated calcium ions. J. Gen. Physiol. 56:168–179.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Hong, F.T. et al. (1979). Magnetic Effects in Cellular and Molecular Systems. In: Tenforde, T.S. (eds) Magnetic Field Effect on Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9143-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9143-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9145-0

  • Online ISBN: 978-1-4615-9143-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics