Skip to main content

Cell Morphogenetic Movements

  • Chapter
Handbook of Teratology

Abstract

During embryological development cells undergo carefully coordinated movements which, if carried out correctly, will result in the formation of tissues and organs. These morphogenetic movements can be classified as migratory, elongating, folding, or “passive” movements.*

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abercrombie, M., Heaysman, J. E. M., and Pegrum, S. M., 1970, The locomotion of fibroblasts in culture. III. Movements of particles on the dorsal surface of the leading lamella, Exp. Cell Res. 62:389.

    Google Scholar 

  • Abercrombie, M., Heaysman, J. E. M., and Pegrum, S. M., 1971, The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella, Exp. Cell. Res. 67:359.

    Google Scholar 

  • Abercrombie, M., Heaysman, J. E. M., and Pegrum, S. M., 1972, Locomotion of fibroblasts in culture. V. Surface marking with concanavalin A, Exp. Cell Res. 73:536.

    Google Scholar 

  • Adelstein, R. S., and Conti, M. A., 1973, The characterization of contractile proteins from platelets and fibroblasts, Cold Spring Harbor Symp. Quant. Biol. 37:599.

    Google Scholar 

  • Allison, A. C., 1973, The role of microfilaments and microtubules in cell movement, endocytosis and exocytosis, in: Ciba Foundation Symposium 14. Locomotion of Tissue Cells, pp. 109–148, Elsevier, New York.

    Google Scholar 

  • Ash, J. F., 1975, Purification and charactization of myosin from the clonal rat glial cell strain C-6, J. Biol. Chem. 250:3560.

    Google Scholar 

  • Ash, J. F., Spooner, B. S., and Wessells, N. K., 1973, Effects of papaverine and calcium-free medium on salivary gland morphogenesis, Dev. Biol. 33:463.

    Google Scholar 

  • Axline, S. G., and Reaven, E. P., 1974, Inhibition of phagocytosis and plasma membrane mobility of the cultivated macrophage by cytochalasin B. Role of subplasmalemmal microfilaments, J. Cell Biol. 62:647.

    Google Scholar 

  • Barbera, A. J., Marchase, R. B., and Roth, S., 1973, Adhesive recognition and retinotectal specificity, Proc. Natl Acad. Sci. U.S.A. 70:2482.

    Google Scholar 

  • Behnke, O., Kristensen, B. I., and Nielsen, L. E., 1971, Electron microscopical observations on actinoid and myosinoid filaments in blood platelets, J. Ultrastruct. Res. 37:351.

    Google Scholar 

  • Bernfield, M. R., and Wessells, N. K., 1970, Intra-and extracellular control of epithelial morphogenesis,!) Dev. Biol. Suppl. 4:195.

    Google Scholar 

  • Bernfield, M. R., Banerjee, S. D., and Cohn, R. H., 1972, Dependence of salivary epithelial morphology and branching morphogenesis upon acid mucopolysaccharide-protein (proteoglycan) at the epithelial surface, J. Cell Biol. 52:674.

    Google Scholar 

  • Bettex-Galland, M., and Lüscher, E. F., 1965, Thrombosthenin, the contractile protein from blood platelets and its relation to other contractile proteins, Adv. Protein Chem. 20:1.

    Google Scholar 

  • Bloch, R., 1973, Inhibition of glucose transport in the human erythrocyte by cytochalasin B, Biochemistry 12:4799.

    Google Scholar 

  • Bluemink, J. G., and de Laat, S. W., 1973, New membrane formation during cytokinesis in normal and cytochalasin B-treated eggs of Xenopus laevis. I. Electron microscope observations, J. Cell Biol. 59:89.

    Google Scholar 

  • Bonner, J. T., 1971, Aggregation and differentiation in the cellular slime molds, Annu. Rev. Microbiol. 25:75.

    Google Scholar 

  • Booyse, F. M., Hoveke, T. P., and Rafelson, M. E., 1973, Human platelet actin. Isolation and properties, J. Biol. Chem. 248:4083.

    Google Scholar 

  • Borisy, G. G., and Olmsted, J. B., 1972, Nucleated assembly of microtubules in porcine brain extracts, Science 177:1196.

    Google Scholar 

  • Bray, D., 1970, Surface movements during the growth of a single explained neuron, Proc. Natl. Acad. Sci. U.S.A. 65:905.

    Google Scholar 

  • Bray, D., 1973, Cytoplasmic actin: A comparative study, Cold Spring Harbor Symp. Quant. Biol. 37:567.

    Google Scholar 

  • Brunk, U., Ericsson, J. L. E., Pontén, J., and Westermark, B., 1971, Specialization of cell surfaces in contact-inhibited human glia-like cells in vitro. Exp. Cell Res. 67:407.

    Google Scholar 

  • Buckley, I. K., and Porter, K. R., 1967, Cytoplasmic fibrils in living cultured cells. A light and electron microscope study, Protoplasma 64:349.

    Google Scholar 

  • Bunge, M. B., 1973, Fine structure of nerve fibers and growth cones of isolated sympathetic neurons in culture, J. Cell Biol. 56:713.

    Google Scholar 

  • Burgess, D. R., and Grey, R. D., 1974, Alterations in morphology of developing microvilli elicited by cytochalasin B. Studies of embryonic chick intestine in organ culture, J. Cell Biol. 62:566.

    Google Scholar 

  • Burton, P. R., and Kirkland, W. L., 1972, Actin detected in mouse neuroblastoma cells by binding of heavy meromyosin, Nature (London) New Biol. 239:244.

    Google Scholar 

  • Byers, B., and Porter, K. R., 1964, Oriented microtubules in elongating cells of the developing lens rudiment after induction, Proc. Natl. Acad. Sci. U.S.A. 52:1091.

    Google Scholar 

  • Cande, W. Z., Snyder, J., Smith, D., Summers, K., and Mcintosh, J. R., 1974, A functional mitotic spindle prepared from mammalian cells in culture, Proc. Natl. Acad. Sci. U.S.A. 71:1559.

    Google Scholar 

  • Carter, S. B., 1967, Effects of cytochalasins on mammalian cells, Nature 213:261.

    Google Scholar 

  • Chang, C.-M., and Goldman, R. D., 1973, The localization of actin-like fibers in cultured neuroblastoma cells as revealed by heavy meromyosin binding, J. Cell Biol. 57:867.

    Google Scholar 

  • Cohen, I., and Cohen, C., 1972, A tropomyosin-like protein from human platelets, J. Mol. Biol. 68:383.

    Google Scholar 

  • Cohn, R. H., Banerjee, S. D., Shelton, E. R., and Bernfield, M. R., 1972, Cytochalasin B: lack of effect on mucopolysaccharide synthesis and selective alterations in precursor uptake, Proc. Natl. Acad. Sci. U.S.A. 69:2865.

    Google Scholar 

  • Cooke, P. H., and Fay, F. S., 1972, Thick myofilaments in contracted and relaxed mammalian smooth muscle cells, Exp. Cell Res. 71:265.

    Google Scholar 

  • Creasy, W. A., and Markiw, M. E., 1965, Biochemical effects of the vinca alkaloids. IV. The synthesis of ribonucleic acid and the incorporation of amino acids in Ehrlich ascites cells in vitro, Biochim. Biophys. Acta 103:635.

    Google Scholar 

  • Daniels, M. P., 1972, Colchicine inhibition of nerve fiber formation in vitro, J. Cell Biol. 53:164.

    Google Scholar 

  • DeHaan, R. L., 1965, Morphogenesis of the vertebrate heart, in: Organogenesis (R. L. DeHaan and H. Ursprung, eds.), pp. 377–419, Holt, Rinehart and Winston, New York.

    Google Scholar 

  • DeHaan, R. L., and Ursprung, H., eds., 1965, Organogenesis, Holt, Rinehart and Winston, New York.

    Google Scholar 

  • Ede, D. A., Bellairs, R., and Bancroft, M., 1974, A scanning electron microscope study of the early limb-bud in normal and talpid 3 mutant chick embryos, J. Embryol Exp. Morphol. 31:761.

    Google Scholar 

  • Edidin, M., and Weiss, A., 1972, Antigen cap formation in cultured fibroblasts: A reflection of membrane fluidity and of cell motility, Proc. Natl. Acad. Sci. U.S.A. 69:2456.

    Google Scholar 

  • Elsdale, T., and Bard, J., 1972, Cellular interactions in mass cultures of human diploid fibroblasts, Nature 236:152.

    Google Scholar 

  • Fine, R. E., and Bray, D., 1971, Actin in growing nerve cells, Nature (London) New Biol. 234:115.

    Google Scholar 

  • Fine, R. E., Blitz, A. L., Hitchcock, S. E., and Kaminer, B., 1973, Tropomyosin in brain and growing neurons, Nature (London), New Biol. 245:182.

    Google Scholar 

  • Forer, A., Emmersen, J., and Behnke, O., 1972, Cytochalasin B: Does it affect actin-like filaments?, Science 175:774.

    Google Scholar 

  • Frazier, W. A., Ohlendorf, C. E., Boyd, L. F., Aloe, L., Johnson, E. M., Ferrendelli, J. A., and Bradshaw, R. A., 1973, Mechanism of action of nerver growth factor and cyclic AMP on neunte outgrowth in embryonic chick sensory ganglia: Demonstration of independent pathways of stimulation, Proc. Natl. Acad. Sci. U.S.A. 70:2448.

    Google Scholar 

  • Freed, J. J., and Lebowtiz, M. M., 1970, The association of a class of saltatory movements with microtubules in cultured cells, J. Cell Biol. 45:334.

    Google Scholar 

  • Freeman, B. G., 1972, Surface modifications of neural epithelial cells during formation of the neural tube in the rat embryo, J. Embryol. Exp. Morphol. 28:437.

    Google Scholar 

  • Fuller, G. M., Brinkley, B. R., and Boughter, J. M., 1975, Immunofluorescence of mitotic spindles by using monospecific antibody against bovine brain tubulin, Science 187:948.

    Google Scholar 

  • Gabbiani, G., Ryan, G. B., Lamelin, J.-P., Vassalli, P., Majno, G., Bouvier, C. A., Cruchaud, A., and Luscher, E. F., 1973, Human smooth muscle antibody. Its identification as antiactin antibody and a study of its binding to “nonmuscular” cells, Am. J. Pathol. 72:473.

    Google Scholar 

  • Gail, M. H., and Boone, C. W., 1971, Effect of Colcemid on fibroblast motility, Exp. Cell Res. 65:221

    Google Scholar 

  • Gail, M. H., Boone, C. W., and Thompson, C. S., 1973, A calcium requirement for fibroblast motility and proliferation, Exp. Cell Res. 79:386.

    Google Scholar 

  • Gazdar, A., Hatanaka, M., Herberman, R., Russell, E., and Ikawa, Y., 1972, Effects of dibutyryl cyclic adenosine phosphate plus theophylline on murine sarcoma virus transformed non-producer cells, Proc. Soc. Exp. Biol. Med. 141:1044.

    Google Scholar 

  • Gingell, D., 1970, Contractile responses at the surface of an amphibian egg, J. Embryol. Exp. Morphol. 23:583.

    Google Scholar 

  • Goldman, R. D., 1971, The role of three cytoplasmic fibers in BHK-21 cell motility. I. Microtubules and the effects of colchicine, J. Cell Biol. 51:752.

    Google Scholar 

  • Goldman, R. D., 1972, The effects of cytochalasin B on the microfilaments of baby hamster kidney (BHK-21) cells, J. Cell Biol. 52:246.

    Google Scholar 

  • Goldman, R. D., and Knipe, D. M., 1973, The functions of cytoplasmic fibers in nonmuscle cell motility, Cold Spring Harbor Symp. Quant. Biol. 37:523.

    Google Scholar 

  • Green, E. L., ed., 1966, Biology of the Laboratory Mouse, 2nd ed., Mc-Graw-Hill, New York.

    Google Scholar 

  • Grimes, G. J., and Barnes, F. S., 1973, A technique for studying Chemotaxis of leucocytes in well-defined chemotactic fields, Exp. Cell Res. 79:375.

    Google Scholar 

  • Grinnell, F., Milam, M., and Srere, P. A., 1973, Cyclic AMP does not affect the rate at which cells attach to a substratum, Nature (London), New Biol. 241:82.

    Google Scholar 

  • Gruenstein, E., Rich, A., and Weihing, R. R., 1975, Actin associated with membranes from 3T3 mouse fibroblast and HeLa cells, J. Cell Biol. 64:223.

    Google Scholar 

  • Gwynn, I., Kemp, R. B., Jones, B. M., and Groschel-Stewart, V. 1974, Ultrastructural evidence for myosin of the smooth muscle type at the surface of trypsin-dissociated embryonic chick cells, J. Cell Sci. 15:279.

    Google Scholar 

  • Haas, D. C., Hier, D. B., Arnason, G. W., and Young, M., 1972, On a possible relationship of cyclic AMP to the mechanism of action of nerve growth factor, Proc. Soc. Exp. Biol. Med. 140:45.

    Google Scholar 

  • Harris, A., 1973a, Behavior of cultured cells on substrata of variable adhesiveness, Exp. Cell Res. 77:285.

    Google Scholar 

  • Harris, A., 1973b, Location of cellular adhesions to solid substrata, Dev. Biol. 35:83.

    Google Scholar 

  • Harris, A., and Dunn, G., 1972, Centripetal transport of attached particles on both surfaces of moving fibroblasts, Exp. Cell Res. 73:519.

    Google Scholar 

  • Hayat, M. A., 1970, Principles and Techniques of Electron Microscopy. Biological Applications, Vol. I, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Heaysman, J. E. M., and Pegrum, S. M., 1973, Early contacts between fibroblasts. An ultrastructural study, Exp. Cell Res. 78:71.

    Google Scholar 

  • Hier, D. B., Arnason, B. G. W., and Young, M., 1973, Nerve growth factor: Relationship to the cyclic AMP system of sensory ganglia, Science 182:79.

    Google Scholar 

  • Hörstadius, S., 1950, The Neural Crest, Oxford Univ. Press, New York.

    Google Scholar 

  • Huestis, W. H., and McConnell, H. M., 1974, A functional acetylcholine receptor in the human erythrocyte, Biochem. Biophys. Res. Commun. 57:726.

    Google Scholar 

  • Huxley, H. E., 1973, Muscular contraction and cell motility, Nature 243:445.

    Google Scholar 

  • Ingram, V. M., 1969, A side view of moving fibroblasts, Nature 222:641.

    Google Scholar 

  • Inoué, S., and Sato, H., 1967, Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement, J. Gen. Physiol. Suppl. 50:259.

    Google Scholar 

  • Ishikawa, H., Bischoff, R., and Holtzer, H., 1969, Formation of arrowhead complexes with heavy meromyosin in a variety of cell types, J. Cell Biol. 43:312.

    Google Scholar 

  • Jahn, T. L., and Bovee, E. C., 1969, Protoplasmic movements within cells, Physiol. Rev. 49:793.

    Google Scholar 

  • Johnson, G. S., and Pastan, I., 1972, Cyclic AMP increases the adhesion of fibroblasts to the substratum, Nature (London), New Biol. 236:247.

    Google Scholar 

  • Johnson, G. S., Morgan, W. D., and Pastan, I., 1972, Regulation of cell motility by cyclic AMP, Nature 235:54.

    Google Scholar 

  • Johnston, M. C., and Listgarten, M. A., 1972, Observations on the migration, interaction, and early differentiation of orofacial tissues, in: Developmental Aspects of Oral Biology (H. C. Slavkin and L. A. Bavetta, eds.), pp. 53–80, Academic Press, New York.

    Google Scholar 

  • Karfunkel, P., 1972, The activity of microtubules and microfilaments in neurulation in the chick, J. Exp. Zool. 181:289.

    Google Scholar 

  • Karfunkel, P., 1974, The mechanisms of neural tube formation, Int. Rev. Cytol. 38:245.

    Google Scholar 

  • Kelley, D. E., 1966, Fine structure of desmosomes, hemidesmosomes, and an adepidermal globular layer in developing newt epidermis, J. Cell Biol. 28:51.

    Google Scholar 

  • Kirschner, M. W., Williams, R. C., Weingarten, M., and Gerhart, J. C., 1974, Microtubules from mammalian brain: Some properties of their depolymerization products and a proposed mechanism of assembly and disassembly, Proc. Natl. Acad. Sci. U.S.A. 71:1159.

    Google Scholar 

  • Lazarides, E., 1975, Tropomyosin antibody: The specific localization of tropomyosin in nonmuscle cells, J. Cell Biol. 65:549.

    Google Scholar 

  • Lazarides, E., and Weber, K., 1974, Actin antibody: The specific visualization of actin filaments in non-muscle cells, Proc. Natl. Acad. Sci. U.S.A. 71:2268.

    Google Scholar 

  • LeDouarin, N., 1973, A biological cell labeling technique and its use in experimental embryology, Dev.Biol. 30:217.

    Google Scholar 

  • Lengsfeld, A. M., Löw, L, Wieland, T., Dancker, P., and Hasselbach, W., 1974, Interaction of phalloidin with actin, Proc. Natl. Acad. Sci. U.S.A. 71:2803.

    Google Scholar 

  • Lessard, J. L., Wee, E. L., and Zimmerman, E. F., 1974, Presence of contractile proteins in mouse fetal palate prior to shelf elevation, Teratology 9:113.

    Google Scholar 

  • Letourneau, P. C., 1975, Cell-to-substratum adhesion and guidance of axonal elongation, Dev. Biol. 44:92.

    Google Scholar 

  • Letourneau, P. C., and Wessells, N. K., 1974, Migratory cell locomotion versus nerve axon elongation. Differences based on the effects of lanthanum ion, J. Cell Biol. 61:56.

    Google Scholar 

  • Lilien, J. E., 1969, Toward a molecular explanation for specific cell adhesion, Curr. Top. Dev. Biol. 4:169.

    Google Scholar 

  • Lin, S., and Spudich, J. A., 1974, Biochemical studies on the mode of action of cytochalasin B. Cytochalasin B binding to red cell membrane in relation to glucose transport, J. Biol. Chem. 249:5778.

    Google Scholar 

  • Lin, S., Santi, D. V., and Spudich, J. A., 1974, Biochemical studies on the mode of action of cytochalasin B. Preparation of [3H]cytochalasin B and studies on its binding to cells, J. Biol. Chem. 249:2268.

    Google Scholar 

  • Linville, G. P., and Shepard, T. H., 1972, Neural tube closure defects caused by cytochalasin B, Nature (London), New Biol. 236:246.

    Google Scholar 

  • Luduena, M. A., and Wessells, N. K., 1973, Cell locomotion, nerve elongation, and microfilaments, Dev. Biol. 30:427.

    Google Scholar 

  • Marantz, R., Ventilla, M., and Shelanski, M., 1969, Vinblastine-induced precipitation of microtubule protein, Science 165:498.

    Google Scholar 

  • Mayer, T. C., 1973, Site of gene action in steel mice: Analysis of the pigment defect by mesoderm-ectoderm recombinations, J. Exp. Zool. 184:345.

    Google Scholar 

  • Mayhew, E., Poste, G., Cowden, M., Toison, N., and Maslow, D., 1974, Cellular binding of 3H-cytochalasin B, J. Cell Physiol. 84:373.

    Google Scholar 

  • McClay, D. R., and Moscona, A. A., 1974, Purification of the specific cell-aggregating factor from embryonic neural retina cells, Exp. Cell Res. 87:438.

    Google Scholar 

  • Mcintosh, J. R., Hepler, P. K., and van Wie, D. G., 1969, Model for mitosis, Nature 224:659.

    Google Scholar 

  • McNutt, N. S., Culp, L. A., and Black, P. H., 1971, Contact-inhibited revertant cell lines isolated from SV40-transformed cells. II. Ultrastructural study, J. Cell Biol. 50:691.

    Google Scholar 

  • McNutt, N. S., Culp, L. A., and Black, P. H., 1973, Contact-inhibited revertant cell lines isolated from SV40-transformed cells. IV. Microfilament distribution and cell shape in untransformed, transformed, and revertant Balb/c 3T3 cells, J. Cell Biol. 56:412.

    Google Scholar 

  • Middleton, C. A., 1973, The control of epithelial cell locomotion in tissue culture, in: Ciba Foundation Symposium 14. Locomotion of Tissue Cells, pp. 251–270, Elsevier, New York.

    Google Scholar 

  • Miranda, A. F., Godman, G. C., Deitch, A. D., and Tanenbaum, S. W., 1974a, Action of cytochalasin D on cells of established lines. I. Early events, J. Cell Biol. 61:481.

    Google Scholar 

  • Miranda, A. F., Godman, G. C., and Tanenbaum, S. W., 1974b, Action of cytochalasin D on cells of established lines. II. Cortex and microfilaments, J. Cell Biol. 62:406.

    Google Scholar 

  • Mizel, S. B., and Wilson, L., 1972, Nucleoside transport in mammalian cells. Inhibition by colchicine, Biochemistry 11:2573.

    Google Scholar 

  • Moscona, A. A., 1973, Cell aggregation, in: Cell Biology in Medicine (E. E. Bittar, ed.), pp. 571–591, John Wiley, New York.

    Google Scholar 

  • Nicklas, W. J., and Berl, S., 1974, Effects of cytochalasin B on uptake and release of putative transmitters by synaptosomes and on brain actomyosin-like protein, Nature 247:471.

    Google Scholar 

  • Olmsted, J. B., and Borisy, G. G., 1973, Microtubules, Annu. Rev. Biochem. 42:507.

    Google Scholar 

  • Olmsted, J. B., Carlson, K., Klebe, R., Ruddle, F., and Rosenbaum, J., 1970, Isolation of microtubule protein from cultured mouse neuroblastoma cells, Proc. Natl. Acad. Sci. U.S.A. 65:129.

    Google Scholar 

  • Orkin, R. W., Pollard, T. D., and Hay, E. D., 1973, SDS gel analysis of muscle proteins in embryonic cells, Dev. Biol. 35:388.

    Google Scholar 

  • Ostlund, R., and Pastan, I., 1975, Fibroblast tubulin, Biochemistry 14:4064–4068.

    Google Scholar 

  • Osdund, R. E., Pastan, I., and Adelstein, R. S., 1974, Myosin in cultured fibroblasts, J. Biol. Chem. 249:3903.

    Google Scholar 

  • Painter, R. G., Sheetz, M., and Singer, S. J., 1975, Detection and ultrastructural localization of human smooth muscle myosin-like molecules in human non-muscle cells by specific antibodies, Proc. Natl. Acad. Sci. U.S.A. 72:1359.

    Google Scholar 

  • Pastan, I., and Johnson, G. S., 1974, Cyclic AMP and the transformation of fibroblasts, Adv. Cancer Res. 19:303.

    Google Scholar 

  • Pearce, T. L., and Zwaan, J., 1970, A light and electron microscopic study of cell behavior and microtubules in the embryonic chicken lens using Colcemid, J. Embryol. Exp. Morphol. 23:491.

    Google Scholar 

  • Perdue, J. F., 1973, The distribution, ultrastructure, and chemistry of microfilaments in cultured chick embryo fibroblasts, J. Cell Biol. 58:265.

    Google Scholar 

  • Piatigorsky, J., Webster, H. D., and Wollberg, M., 1972, Cell elongation in the cultured embryonic chick lens epithelium with and without protein synthesis, J. Cell Biol. 55:82.

    Google Scholar 

  • Pick, E., 1972, Cyclic AMP affects macrophage migration, Nature (London), New Biol. 238:176.

    Google Scholar 

  • Pollard, T. D., and Korn, E. D., 1973, Electron microscopic identification of actin associated with isolated amoeba plasma membranes, J. Biol. Chem. 248:448.

    Google Scholar 

  • Pollard, T. D., and Weihing, R. R., 1974, Actin and myosin and cell movement, CRC Grit. Rev. Biochem. 2:1.

    Google Scholar 

  • Porter, K. R., 1966, Cytoplasmic microtubules and their functions, in: Ciba Foundation Symposium. Principles of Biomolecular Organization, pp. 308–356, Little, Brown, Boston.

    Google Scholar 

  • Prasad, K. N., 1972, Morphological differentiation induced by prostaglandin in mouse neuroblastoma cells in culture, Nature (London), New Biol. 236:49.

    Google Scholar 

  • Pratt, R. M., Larsen, M. A., and Johnston, M. C., 1975, Migration of cranial neural crest cells in a cell-free hyaluronate-rich matrix, Dev. Biol. 44:298.

    Google Scholar 

  • Privat, A., Drian, M. J., and Mandon, P., 1973, The outgrowth of rat cerebellum in organized culture, Z. Zellforsch. Mikrosk. Anat. 146:45.

    Google Scholar 

  • Puszkin, E., Puszkin, S., Lo, L. W., and Tanenbaum, S. W., 1973, Binding of cytochalasin D to platelet and muscle myosin, J. Biol. Chem. 248:7754.

    Google Scholar 

  • Rakic, P., and Sidman, R. L., 1973, Weaver mutant mouse cerebellum: Defective neuronal migration secondary to abnormality of Bergmann glia, Proc. Natl. Acad. Sci. U.S.A. 70:240.

    Google Scholar 

  • Rambourg, A., 1971, Morphological and histochemical aspects of glycoproteins at the surface of animal cells, Int. Rev. Cytol. 31:57.

    Google Scholar 

  • Reaven, E. P., and Axline, S. G., 1973, Subplasmalemmal microfilaments and microtubules in resting and phagocytizing cultivated macrophages, J. Cell Biol. 59:12.

    Google Scholar 

  • Roisen, F. J., Murphy, R. A., Pichichero, M. E., and Braden, W. G., 1972, Cyclic adenosine monophosphate stimulation of axonal elongation, Science 175:73.

    Google Scholar 

  • Roth, S., 1973, A molecular model for cell interactions, Q. Rev. Biol. 48:541.

    Google Scholar 

  • Sanger, J. W., 1975a, Changing patterns of actin localization during cell division, Proc. Natl. Acad. U.S.A. 72:1913.

    Google Scholar 

  • Sanger, J. W., 1975b, Presence of actin during chromosomal movement, Proc. Natl. Acad. Sci. U.S.A. 72:2451.

    Google Scholar 

  • Schroeder, T. E., 1970, The contractile ring. I. Fine structure of dividing mammalian (HeLa) cells and the effects of cytochalasin, B. Z. Zellforsch. Mikrosk. Anat. 109:431.

    Google Scholar 

  • Schroeder, T. E., 1973, Actin in dividing cells: Contractile ring filaments bind heavy meromyosin, Proc. Natl. Acad. Sci. U.S.A. 70:1688.

    Google Scholar 

  • Seeman, P., Chau-Wong, M., and Moyyen, S., 1973, Membrane expansion by vinblastine and strychnine, Nature (London), New Biol. 241:22.

    Google Scholar 

  • Snell, W. J., Dentier, W. L., Haimo, L. T., Binder, L. I., and Rosenbaum, J. L., 1974, Assembly of chick brain tubulin onto isolated basal bodies of Chlamydomonas reinhardi, Science 185:357.

    Google Scholar 

  • Somlyo, A. P., Devine, C. E., and Somlyo, A. V., 1971, Thick filaments in unstretched mammalian smooth muscle, Nature (London), New Biol. 233:218.

    Google Scholar 

  • Speidel, C. C., 1933, Studies of living nerves. II. Activities of ameboid growth cones, sheath cells, and myelin segments, as revealed by prolonged observation of individual nerve fibers in frog tadpoles, Am. J. Anat. 52:1.

    Google Scholar 

  • Spiegelman, M., and Bennett, D., 1974, Fine structural study of cell migration in the early mesoderm of normal and mutant mouse embryo (T-locus: t 9/t 9), J. Embryol. Exp. Morphol. 32:723.

    Google Scholar 

  • Spooner, B. S., 1973, Cytochalasin B: Toward an understanding of its mode of action, Dev. Biol. 35:f-13.

    Google Scholar 

  • Spooner, B. S., 1974, Morphogenesis of vertebrate organs, in Concepts of Development (J. Lash and J. R. Whittaker, eds.), pp. 213–240, Sinauer Associates, Stamford, Conn.

    Google Scholar 

  • Spooner, B. S., and Wessells, N. K., 1972, An analysis of salivary gland morphogenesis: Role of cytoplasmic microfilaments and microtubules, Dev. Biol. 27:38.

    Google Scholar 

  • Spooner, B. S., Yamada, K. M., and Wessells, N. K., 1971, Microfilaments and cell locomotion, J. Cell Biol. 49:595.

    Google Scholar 

  • Spooner, B. S., Ash, J. F., Wrenn, J. T., Frater, R. B., and Wessells, N. K., 1973, Heavy meromyosin binding to microfilaments involved in cell and morphogenetic movements, Tissue Cell 5:37.

    Google Scholar 

  • Spudich, J. A., 1973, Effects of cytochalasin B on actin filaments, Cold Spring Harbor Symp. Quant. Biol. 37:585.

    Google Scholar 

  • Spudich, J. A., 1974, Biochemical and structural studies of actomyosin-like proteins from non-muscle cells. II. Purification, properties, and membrane association of actin from amoebae of Dictyostelium discoideum, J. Biol. Chem. 249:6013.

    Google Scholar 

  • Spudich, J. A., and Lin, S., 1972, Cytochalasin B, its interaction with actin and actomyosin from muscle, Proc. Natl. Acad. Sci. U.S.A. 69:442.

    Google Scholar 

  • Stadler, J., and Franke, W. W., 1972, Colchicine-binding proteins in chromatin and membranes, Nature (London), New Biol. 237:237.

    Google Scholar 

  • Steinberg, M. S., 1970, Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells, J. Exp. Zool. 173:395.

    Google Scholar 

  • Stossel, T. P., and Pollard, T. D., 1973, Myosin in polymorphonuclear leukocytes, J. Biol. Chem. 248:8288.

    Google Scholar 

  • Strassman, R. J., Letourneau, P. C., and Wessells, N. K., 1973, Elongation of axons in an agar matrix that does not support cell locomotion, Exp. Cell Res. 81:482.

    Google Scholar 

  • Tannenbaum, J., Tanenbaum, S. W., Lo, L. W., Godman, G. C., and Miranda, A. F., 1975, Binding and subcellular localization of tritiated cytochalasin D, Exp. Cell Res. 91:47.

    Google Scholar 

  • Taylor, E. L., and Wessells, N. K., 1973, Cytochalasin B: Alterations in salivary gland morphogenesis not due to glucose depletion, Dev. Biol. 31:421.

    Google Scholar 

  • Tennyson, V. M., 1970, The fine structure of the axon and growth cone of the dorsal root neuroblast of the rabbit embryo, J. Cell Biol. 44:62.

    Google Scholar 

  • Tilney, L. G., 1968, The assembly of microtubules and their role in the development of cell form, Dev. Biol. Suppl. 2:63.

    Google Scholar 

  • Tilney, L. G., and Gibbins, J. R., 1968, Differential effects of antimitotic agents on the stability and behavior of cytoplasmic and ciliary microtubules, Protoplasma 65:167.

    Google Scholar 

  • Toole, B. P., Jackson, G., and Gross, J., 1972, Hyaluronate in morphogenesis: Inhibition of chondrogenesis in vitro, Proc. Natl. Acad. Sci. U.S.A. 69:1384.

    Google Scholar 

  • Trelstad, R. L., Hay, E. D., and Revel, J. P., 1967, Cell contact during early morphogenesis in the chick embryo, Dev. Biol. 16:78.

    Google Scholar 

  • Trinkaus, J. P., 1969, Cells into Organs. The Forces that Shape the Embryo, Prentice-Hall, Englewood Cliffs, N. J.

    Google Scholar 

  • Trinkaus, J. P., 1973, Modes of cell locomotion in vivo, in: Ciba Foundation Symposium 14. Locomotion of Tissue Cells, pp. 233–249, Elsevier, New York.

    Google Scholar 

  • Vasiliev, Ju. M., Gelfand, I. M., Domnina, L. V., Ivanova, O. Y., Komm, S. G., and Olshevskaja, L. V., 1970, Effect of Colcemid on the locomotory behavior of fibroblasts, J. Embryol. Exp. Morphol. 24:625.

    Google Scholar 

  • Vaughan, R. B., and Trinkaus, J. P., 1966, Movements of epithelial cell sheets in vitro, J. Cell Sci. 1:407.

    Google Scholar 

  • Waddell, A. W., Robson, R. T., and Edwards, J. G., 1974, Colchicine and vinblastine inhibit fibroblast aggregation, Nature 248:239.

    Google Scholar 

  • Warner, D. A., and Perdue, J. F., 1972, Cytochalasin B and the adenosine triphosphate content of treated fibroblasts, J. Cell Biol. 55:242.

    Google Scholar 

  • Weber, K., and Groeschel-Stewart, U., 1974, Antibody to myosin: The specific visualization of myosin-containing filaments in nonmuscle cells, Proc. Natl. Acad. Sci. U.S.A. 71:4561.

    Google Scholar 

  • Weber, K., Pollack, R., and Bibring, T., 1975, Antibody against tubulin: The specific visualization of cytoplasmic microtubules in tissue culture cells, Proc. Natl. Acad. Sci. U.S.A. 72:459.

    Google Scholar 

  • Weingarten, M. D., Lockwood, A. H., Hwo, S.-Y., and Kirschner, M. W., 1975, A protein factor essential for microtubule assembly, Proc. Natl. Acad. Sci. U.S.A. 72:1858.

    Google Scholar 

  • Weisenberg, R. C., 1972, Microtubule formation in vitro in solutions containing low calcium concentrations, Science 177:1104.

    Google Scholar 

  • Wessells, N. K., and Cohen, J. H., 1967, Early pancrease organogenesis: Morphogenesis, tissue interactions, and mass effects, Dev. Biol. 15:237.

    Google Scholar 

  • Wessells, N. K., and Evans, J., 1968, Ultrastructural studies of early morphogenesis and cytodif-ferentiation in the embryonic mammalian pancreas, Dev. Biol. 17:413.

    Google Scholar 

  • Wessells, N. K., Spooner, B. S., Ash, J. F., Bradley, M. O., Luduena, M. A., Taylor, E. L., Wrenn, J. T., and Yamada, K. M., 1971, Microfilaments in cellular and developmental processes, Science 171:135.

    Google Scholar 

  • Wessells, N. K., Spooner, B. S., and Luduena, M. A., 1973, Surface movements, microfilaments and cell locomotion, in: Ciba Foundation Symposium 14. Locomotion of Tissue Cells, pp. 53–82, Elsevier, New York.

    Google Scholar 

  • Weston, J. A., 1970, The migration and differentiation of neural crest cells, Adv. Morphog. 8:41.

    Google Scholar 

  • Wickus, G., Gruenstein, E., Robbins, P. W., and Rich, A., 1975, Decrease in membrane-associated actin of fibroblasts after transformation by Rous sarcoma virus, Proc. Natl. Acad. Sci. U.S.A. 72:746.

    Google Scholar 

  • Willingham, M. C., 1975, Cyclic AMP and cell behavior, Int. Rev. Cytol. 44:319.

    Google Scholar 

  • Willingham, M. C., Ostlund, R. E., and Pastan, I., 1974, Myosin is a component of the cell surface of cultured cells, Proc. Natl. Acad. Sci. U.S.A. 71:4144.

    Google Scholar 

  • Wilson, L., Bryan, J., Ruby, A., and Mazia, D., 1970, Precipitation of proteins by vinblastine and calcium ions, Proc. Natl. Acad. Sci. U.S.A. 66:807.

    Google Scholar 

  • Wrenn, J. T., 1971, An analysis of tubular gland morphogenesis in chick oviduct, Dev. Biol. 26:400.

    Google Scholar 

  • Wrenn, J. T., and Wessells, N. K., 1969, An ultrastructural study of lens invagination in the mouse, J. Exp. Zool. 171:359.

    Google Scholar 

  • Wuerker, R. B., and Kirkpatrick, J. B., 1972, Neuronal microtubules, neurofilaments, and microfilaments, Int. Rev. Cytol. 33:45.

    Google Scholar 

  • Wunderlich, F., Müller, R., and Speth, V., 1973, Direct evidence for a colchicine-induced impairment in the mobility of membrane components, Science 182:1136.

    Google Scholar 

  • Yahara, I., and Edelman, G. M., 1973, Modulation of lymphocyte receptor redistribution by concanavalin A, anti-mitotic agents and alterations of pH, Nature (London), New Biol.- 236:152.

    Google Scholar 

  • Yamada, K. M., and Wessells, N. K., 1973, Cytochalasin B: Effects on membrane ruffling, growth cone and microspike activity, and microfilament structure not due to altered glucose transport, Devel. Biol. 31:413.

    Google Scholar 

  • Yamada, K. M., Spooner, B. S., and Wessells, N. K., 1970, Axon growth: Roles of microfilaments and microtubules, Proc. Natl. Acad. Sci. U.S.A. 66:1206.

    Google Scholar 

  • Yamada, K. M., Spooner, B. S., and Wessells, N. K., 1971, Ultrastructure and function of growth cones and axons of cultured nerve cells, J. Cell Biol. 49:614.

    Google Scholar 

  • Yamada, K. M., Yamada, S. S., and Pastan, I., 1975, The major cell surface glycoprotein of chick fibroblasts is an agglutinin, Proc. Natl. Acad. Sci. U.S.A. 72:3158.

    Google Scholar 

  • Yang, Y.-Z., and Perdue, J. F., 1972, Contractile proteins of cultured cells. 1. The isolation and characterization of an actin-like protein from cultured chick embryo fibroblasts, J. Biol. Chem. 247:4503.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Yamada, K.M. (1977). Cell Morphogenetic Movements. In: Wilson, J.G., Fraser, F.C. (eds) Handbook of Teratology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8933-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8933-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8935-8

  • Online ISBN: 978-1-4615-8933-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics