Skip to main content

Are Solid Surfaces of Ecological Significance to Aquatic Bacteria?

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 6))

Abstract

Man has long been aware of microbial attachment to solid surfaces in the sea and in freshwaters, as slime layers formed by attached microorganisms and their associated polymers are easily detected by touch. Moreover, such slime layers frequently become a nuisance, or even a serious fouling problem, when they occur on submerged man-made structures, such as ship hulls, platforms, or dams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, M., 1971, Microbial Ecology John Wiley & Sons, New York.

    Google Scholar 

  • Anderson, J. I. W., and Heffernan, W. P., 1965, Isolation and characterization of filterable marine bacteria, J. Bacteriol. 90 :1713–1718.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baier, R. E., 1980, Substrata influences on adhesion of microorganisms and their resultant new surface properties, in: Adsorption of Microorganisms to Surfaces (G. Bitton and K. C. Marshall, eds.), pp. 59–104, Wiley-Interscience, New York.

    Google Scholar 

  • Baier, R. E., 1981, Early events of micro-biofouling of all heat transfer equipment, in: Fouling of Heat Transfer Equipment (E. F. C. Somerscales and J. G. Knudsen, eds.), pp. 293–304, Hemisphere Publ. Co., Washington, D.C.

    Google Scholar 

  • Baier, R. E., and Loeb, G. I., 1971, Multiple parameters characterizing interfacial films of a protein analogue, polymethyl glutamate, in: Polymer Characterization: Interdisciplinary Approaches (D. D. Craver, ed.), pp. 79–96, Plenum Press, New York.

    Google Scholar 

  • Bell, K. J., 1978, The effect of fouling on OTEC heat exchanger design, construction and operation, in: Proceedings OTEC Biofouling and Corrosion Symposium (R. H. Gray, ed.), pp. 19–30, Pacific Northwest Laboratory, Richland, Wash.

    Google Scholar 

  • Boyle, P. J., and Mitchell, R., 1980, Interactions between microorganisms and wood-boring crustaceans, in: Biodeterioration (T. A. Oxley, G. Becker, and D. Allsopp, eds.), pp. 179–186, Pitman Publ., London, and Biodeterioration Society.

    Google Scholar 

  • Brown, C. M., Ellwood, D. C., and Hunter, J. R., 1977, Growth of bacteria at surfaces: influence of nutrient limitation, FEMS Microbiol. Lett. 1 :163–166.

    CAS  Google Scholar 

  • Bryers, J. D., and Charackiis, W. G., 1981, Kinetics of initial biofilm formation within a turbulent flow system, in: Fouling of Heat Transfer Equipment (E. F. C. Somerscales and J. G. Knudsen, eds.), pp. 313–333, Hemisphere Publ. Co., Washington, D.C.

    Google Scholar 

  • Characklis, W. G., 1980, Biofilm development and destruction, Electric Power Research Institute Report 902–1 (September, 1980).

    Google Scholar 

  • Characklis, W. G., 1981a, Microbial fouling: a process analysis, in: Fouling of Heat Transfer Equipment (E. F. C. Somerscales and J. G. Knudsen, eds.), pp. 251–291, Hemisphere Publ. Co., Washington, D.C.

    Google Scholar 

  • Characklis, W. G., 1981 b, Bioengineering report: fouling biofilm development: a process analysis, Biotech. Bioeng. 23 :1923–1960.

    CAS  Google Scholar 

  • Chet, I., Asketh, P., and Mitchell, R., 1975, Repulsion of bacteria from marine surfaces, Appl. Microbiol. 30 :1043–1045.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Christie, A.O., Evans, L. V., and Shaw, M., 1970, Studies on the ship-fouling algae Enteromorpha: II The effect of certain enzymes on the adhesion of zoospores. Ann. Bot. 34 :467-482.

    CAS  Google Scholar 

  • Clark, W. B., and Gibbons, R. J., 1977, Influence of salivary components and extracellular polysaccharide synthesis from sucrose on the attachment of Streptococcus mutans 6715 to hydroxyapatite surfaces, Infect. Immunity 18 :514–523.

    CAS  Google Scholar 

  • Conn, H. J., and Conn, J. E., 1940, The stimulating effect of colloids upon the growth of certain bacteria, J. Bacteriol. 39 :99–100.

    CAS  Google Scholar 

  • Corpe, W. A., 1970, An acid polysaccharide produced by primary film-forming bacteria, Develop. Ind. Microbiol. 11 :402–412.

    Google Scholar 

  • Corpe, W. A., 1973, Microfouling: the role of primary film-forming bacteria, in: Proc. 3rd Int. Congr. Mar. Corrosion Fouling (R. F. Acker, B. F. Brown, J. R. DePalma, and W. P. Iverson, eds.), pp. 598–609, Northwestern Univ. Press, Evanston, Ill.

    Google Scholar 

  • Corpe, W. A., Matsuuchi, L., and Armbruster, B., 1976, Secretion of adhesive polymers and attachment of marine bacteria to surfaces, in: Proc. 3rd Int. Biodegradation Symp. (J. M. Sharpley and A. M. Kaplan, eds.). pp. 433–442, Applied Science Publ., London.

    Google Scholar 

  • Costerton, J. W., Geesey, G. G., and Cheng, K-J., 1978, How bacteria stick, Sci. Am. 238 :86–95.

    CAS  PubMed  Google Scholar 

  • Cundell, A. M., Sleeter, T. D., and Mitchell, R., 1977, Microbial populations associated with the surface of the brown alga Ascophyllum nodosum. Microb. Ecol. 4:81–91.

    CAS  PubMed  Google Scholar 

  • Curtis, A. S. G., 1979, Summing-up, in: Adhesion of Microorganisms to Surfaces (D. C. Ellwood, J. Melling, and P. Rutter, eds.), pp. 199–208, Academic Press, London.

    Google Scholar 

  • Dahlbäck, B., Hermansson, M., Kjelleberg, S., and Norkrans, B., 1981, The hydrophobicity of bacteria-an important factor in their initial adhesion at the air-water interface, Arch. Microbiol. 128:267–270.

    PubMed  Google Scholar 

  • Danielsson, A., Norkrans, B., and Björnsson, A., 1977, On bacterial adhesion-the effect of certain enzymes on adhered cells of a marine Pseudomonas sp, Botan. Mar. 20: 13–17.

    CAS  Google Scholar 

  • Dawson, M. P., Humphrey, B. A., and Marshall, K. C., 1981, Adhesion, a tactic in the survival strategy of a marine vibrio during starvation. Curro Microbiol. 6:195–198.

    Google Scholar 

  • Dazzo, F. B., 1980, Microbial adhesion to plant surfaces, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), pp. 311–328, Ellis Horwood Publ., Chichester.

    Google Scholar 

  • Dempsey, M. J., 1981, Marine bacterial fouling: a scanning electron microscope study, Mar. Bioi. 61:305–315.

    Google Scholar 

  • Dexter, S. C., 1979, Influence of substratum critical surface tension on bacterial adhesion-in situ studies, J. Coli. Interface Sci. 70:346–354.

    CAS  Google Scholar 

  • Dexter, S. C., Sullivan, J. D. Jr., Williams, J., and Watson, S. W., 1975, Influence of substratum wettability on the attachment of marine bacteria to various surfaces, Appl. Microbiol. 30:298–308.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Douglas, S. R., Fleming, A., and Colebrook, M. B., 1917, On the growth of anaerobic bacilli in fluid media under apparently aerobic conditions, Lancet 2 :530–532.

    Google Scholar 

  • Ellen, R. P., Walker, D. L., and Chan, K. H., 1978, Association of long surface appendages with adherence-related functions of the Gram-positive species Actinomyces naeslundii. J. Bacteriol. 134:1171–1175.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ellwood, D. C., Hunter, J. R., and Longyear, V. M. C., 1974, Growth of Streptococcus mutans in a chemostat, Arch. Oral Bioi. 19:659–664.

    CAS  Google Scholar 

  • Fletcher, M., 1976, The effects of proteins on bacterial attachment to polystyrene, J. Gen. Microbioi. 94:400–404.

    CAS  Google Scholar 

  • Fletcher, M., 1977, The effects of culture concentration and age, time and temperature on bacterial attachment to polystyrene, Can. J. Microbiol. 23:1–6.

    Google Scholar 

  • Fletcher, M., 1979, A microautoradiographic study of the activity of attached and free-living bacteria, Arch. Microbiol. 122:271–274.

    Google Scholar 

  • Fletcher, M., 1980, The question of passive versus active attachment mechanisms in nonspecific bacterial adhesion, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), pp. 197–210, Ellis Horwood Publ., Chichester.

    Google Scholar 

  • Fletcher, M., and Floodgate, G. D., 1973, An electron-microscopic demonstration of an acidic polysaccharide involved in adhesion of a marine bacterium to solid surfaces, J. Gen. Microbioi. 74:325–334.

    CAS  Google Scholar 

  • Fletcher, M., and Floodgate, G. D., 1976, The adhesion of bacteria to solid surfaces, in: Microbial Ultrastructure: the Use of the Electron Microscope (R. Fuller and D. W. Lovelock, eds.), pp. 101–107, Academic Press, London.

    Google Scholar 

  • Fletcher, M., and Loeb, G. I., 1979, The influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces, Appl. Environ. Microbiol. 37:67–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fletcher, M., and Marshall, K. C., 1982, A bubble contact angle method for evaluating substratum interfacial characteristics and its relevance to bacterial attachment Appl. Environ. Microbiol. (in press).

    Google Scholar 

  • Fuhrman, J. A., 1981, Influence of method on the apparent size distribution of bacterioplankton cells: epifluorescence microscopy compared to scanning electron microscopy, Mar. Ecol. Prog. Ser. 5:103–106.

    Google Scholar 

  • Gerchakov, S. M., Marszalek, D. S., Roth, F. J., and Udey, L. R., 1977, Succession of periphytic microorganisms on metal and glass surfaces in: Proc. 4th Int. Congr. Mar. Corrosion Fouling (V. Romanovsky, ed.), pp. 203–211, Centre de Recherches et d’Etudes Oceanographiques, Boulogne, France.

    Google Scholar 

  • Gerchakov, S. M., Marszalek, D. S., Roth, F. J., Sallman, B., and Udey, L. R., 1978, Observations on microfouling applicable to OTEC systems, in: Proceedings OTEC Biofouling and Corrosion Symposium (R. H. Gray, ed.), pp. 63–75, Pacific Northwest Laboratory, Richland, Wash.

    Google Scholar 

  • Gerson, D. F., 1980, Cell surface. energy, contact angles and phase partition I. Lymphocytic cell lines in biphasic aqueous mixtures, Biochim. Biophys. Acta 602:269–280.

    CAS  PubMed  Google Scholar 

  • Gerson, D. F., and Akit, J., 1980, Cell surface energy, contact angles and phase partition II. Bacterial cells in biphasic aqueous mixtures, Biochim. Biophys. Acta 602:281–284.

    CAS  PubMed  Google Scholar 

  • Gerson, D. F., and Scheer, D., 1980, Cell surface energy, contact angles and phase partition III. Adhesion of bacterial cells to hydrophobic surfaces. Biochim. Biophys. Acta 602:506–510

    CAS  PubMed  Google Scholar 

  • Goulder, R., 1977, Attached and free bacteria in an estuary with abundant suspended solids, J. Appl. Bacteriol. 43:399–405.

    Google Scholar 

  • Harden, V. P., and Harris, J. O., 1953, The isoelectric point of bacterial cells, J. Bacteriol. 65:198–202.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hargraves, B. T., and Phillips, G. A., 1977, Oxygen uptake of microbial communities on solid surfaces, in: Aquatic Microbial Communities (J. Cairns, eds.), pp. 545–587, Garland Publ., New York.

    Google Scholar 

  • Harremoës, P., 1978, Biofilm kinetics, in: Water Pollution Microbiology, Vol. 2 (R. Mitchell, ed.), John Wiley & Sons, New York.

    Google Scholar 

  • Harvey, R. W., and Young, L. Y., 1980, Enumeration of particle-bound and unattached respiring bacteria in the salt marsh environment, Appl. Environ. Microbiol. 40:156–160.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harwood, J. H., and Pirt, S. J., 1972, Quantitative aspects of growth of the methane oxidizing bacterium Methylococcus capsulatus on methane in shake flask and continuous chemostat culture, J. Appl. Bacteriol. 35:597–607.

    CAS  PubMed  Google Scholar 

  • Hattori, T., and Furusaka, C., 1959, Chemical activities of Escherichia coli adsorbed on a resin, Biochim. Biophys. Acta 31:581–582.

    CAS  PubMed  Google Scholar 

  • Hattori, T., and Furusaka, C., 1960, Chemical activities of Escherichia coli adsorbed on a resin, J. Biochem. 48:831–837.

    CAS  Google Scholar 

  • Hattori, R., and Hattori, T., 1963, Effect of a liquid-solid interface on the life of microorganisms, Ecol. Rev. 16:64–70.

    Google Scholar 

  • Hendricks, C. W., 1974, Sorption of heterotrophic and enteric bacteria to glass surfaces in the continuous culture of river water, Appl. Microbiol. 28:572–578.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heukelekian, H., and Heller, A., 1940, Relation between food concentration and surface for bacterial growth, J. Bacteriol. 40:547–558.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirsch, P., 1979, Life under conditions of low nutrient concentrations, in: Strategies of Microbial Life in Extreme Environments (M. Shilo, ed.), pp. 357–372, Dahlem Konfr. Life Sci. Res. Report 13, Verlag Chemie, Weinheim.

    Google Scholar 

  • Hirsch, P., and Pankratz, S. H., 1971, Studies of bacterial populations in natural environments by use of submerged electron microscope grids, Z. Allg. Mikrobiol. 10:589–605.

    Google Scholar 

  • Hoppe, H.-G., 1976, Determination and properties of actively metabolizing heterotrophic bacteria in the sea, investigated by means of microautoradiography, Mar. BioI. 36:291–302.

    Google Scholar 

  • Hossell, J. C., and Baker, J. H., 1979, A note on the enumeration of epiphytic bacteria by microscopic methods with particular reference to two freshwater plants, J. Appl. Bacteriol. 46:87–92.

    Google Scholar 

  • Humphrey, B. A., Dickson, M. R., and Marshall, K. C., 1979, Physicochemical and in situ observations on the adhesion of gliding bacteria to surfaces, Arch. Microbiol. 120:231–238.

    CAS  Google Scholar 

  • Jannasch, H. W., 1967, Enrichments of aquatic bacteria in continuous culture, Arch. Mikrobiol. 59:165–173.

    CAS  PubMed  Google Scholar 

  • Jannasch, H. W., and Pritchard, P. H., 1972, The role of inert particulate matter in the activity of aquatic microorganisms, Mem. 1st. Ital. Idrobiol. 29 Suppl: 289–308.

    CAS  Google Scholar 

  • Jordan, T. L., and Staley, J. T., 1976, Electron microscopic study of succession in the periphyton community of Lake Washington, Microb. Ecol. 2:241–251.

    Google Scholar 

  • Kjelleberg, S., Lagercrantz, C., and Larsson, T., 1980, Quantitative analysis of bacterial hydrophobicity studied by the binding of dodecanoic acid, FEMS Microbiol. Lett. 7:41–44.

    CAS  Google Scholar 

  • Kjelleberg, S., Humphrey, B. A., and Marshall, K. C., 1982, The effects of interfaces on small starved marine bacteria, Appl. Environ. Microbiol. 43:1166–1172.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koch, A. L., 1979, Microbial growth in low concentrations of nutrients, in: Strategies of Microbial Life in Extreme Environments (M. Shilo, ed.), pp. 261–279, Dahlem Konfr. Life Sci. Res. Report 13, Verlag Chemie, Weinheim.

    Google Scholar 

  • Kunc, F., and Stotzky, G., 1970, Breakdown of some aldehydes in soils with different amounts of montmorillonite and kaolinite, Folia Microbiol. 15:216.

    Google Scholar 

  • Kunznetzov, S. I., Dubinina, G. A., and Lapteva, N. A., 1979, Biology of oligotrophic bacteria, Annu. Rev. Microbiol. 33:377–387.

    Google Scholar 

  • Lahav, N., 1962, Adsorption of sodium bentonite particles on Bacillus subtilis, Plant and Soil 17:191–208.

    CAS  Google Scholar 

  • Leech, R., and Hefford, R. J. W., 1980, The observation of bacterial deposition from a flowing suspension, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, B. Vincent, eds.), pp. 544–545, Ellis Horwood Publ., Chichester.

    Google Scholar 

  • Loeb, G. I., 1977, The settlement of fouling organisms on hydrophobic surfaces, Naval Research Laboratory Memorandum Report 3665, Washington, D.C.

    Google Scholar 

  • Lupton, F. S., and Marshall, K. C., 1981, Specific adhesion of bacteria to heterocysts of Anabaena spp. and its ecological significance, Appl. Environ. Microbiol. 42:1085–1092.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maigetter, R. Z., and Pfister, R. M., 1975, A mixed bacterial population in a continuous culture with and without kaolinite, Can. J. Microbiol. 21:173–180.

    CAS  PubMed  Google Scholar 

  • Marshall, K. C., 1968, Interaction between colloidal montmorillonite and cells of Rhizobium species with different ionogenic surfaces, Biochim. Biophys. Acta 156:179–186.

    CAS  PubMed  Google Scholar 

  • Marshall, K. C., 1979, Growth at interfaces, in: Strategies of Microbial Life in Extreme Environments (M. Shilo, ed.), pp. 281–290, Dahlem Konfr. Life Sci. Res. Report 13, Verlag Chemie, Weinheim.

    Google Scholar 

  • Marshall, K. C., 1980, Reactions of microorganisms, ions and macromolecules at interfaces, In: Contemporary Microbial Ecology (D. C. Ellwood, J. N. Hedger, M. J. Latham, J. M. Lynch, and J. H. Slater, eds.), pp. 93–106, Academic Press, London.

    Google Scholar 

  • Marshall, K. C., and Cruickshank, R. H., 1973, Cell surface hydrophobicity and the orientation of certain bacteria at interfaces, Arch. Mikrobiol. 91:29–40.

    CAS  PubMed  Google Scholar 

  • Marshall, K. C., Stout, R., and Mitchell, R., 1971a, Mechanism of the initial events in the sorption of marine bacteria to surfaces, J. Gen. Microbiol. 68:337–348.

    CAS  Google Scholar 

  • Marshall, K. C., Stout, R., and Mitchell, R., 1971b, Selective sorption of bacteria from seawater, Can J. Microbiol. 17:1413–1416.

    CAS  PubMed  Google Scholar 

  • Marszalek, D. S., Gerchakov, S. M., and Udey, L. R., 1979, Influence of substrate composition on marine microfouling, Appl. Environ. Microbiol. 38:987–995.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer-Reil, L-A, 1978, Autoradiograpny and epiftuorescnece microscopy combined for the determination of number and spectrum of actively metabolizing bacteria in natural waters, Appl. Environ. Microbiol. 36:506–512.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Minato, H., and Suto, T., 1976, Technique for fractionation of bacteria in rumen microbial ecosystem. I. Attachment of rumen bacteria to starch granules and elution of bacteria attached to them, J. Gen. Appl. Microbiol. 22:259–276.

    Google Scholar 

  • Moss, B., 1980, Ecology of Fresh Waters Blackwell, Oxford.

    Google Scholar 

  • Navarro, J. M., and Durand, G., 1977, Modification of yeast metabolism by immobilisation onto porous glass, Eur. J. Appl. Microbiol. 4:243–254.

    CAS  Google Scholar 

  • Neihof, R. A., and Loeb, G. I., 1972, The surface charge of particulate matter in seawater, Limnol.Oceanogr. 17:7–16.

    CAS  Google Scholar 

  • Neihof, R., and Loeb, G., 1974, Dissolved organic matter in seawater and the electric charge of immersed surfaces, J. Mar. Res. 32:5–12.

    CAS  Google Scholar 

  • Neumann, A. W., Good, R. J., Hope, C. J., and Sejpal, M., 1974. An equation-of-state approach to determine surface tensions of low energy solids from contact angles, J. Coli. Interface Sci. 49:291–304.

    CAS  Google Scholar 

  • Neumann, A. W., Absolom, D. R., van Oss, C. J., and Zingg, W., 1979, Surface thermodynamics of leukocyte and platelet adhesion to polymer surfaces, Cell. Biophys. 1:79–92.

    CAS  PubMed  Google Scholar 

  • Norde, W., and Lyklema, J., 1978, Adsorption of proteins from aqueous solution on negatively charged polystyrene surfaces, in: Ions in Macromolecular and Biological Systems (D. H. Everett and B. Vincent, eds.), pp. 11–35, Scientechnica, Bristol.

    Google Scholar 

  • Nováková, J., 1970, Effect of clay minerals on the mineralisation of peptone in liquid medium, Folia Microbiol. 15 :217.

    Google Scholar 

  • Novitsky, J. A., and Morita, R. Y., 1976, Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio, Appl. Environ. Microbiol. 32:617–622.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Novitsky, J. A., and Morita, R. Y., 1977, Survival of a psychrophilic marine vibrio under long term nutrient starvation, Appl. Environ. Microbiol. 33 :635–641.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Novitsky, J. A., and Morita, R. Y., 1978, Possible strategy for the survival of marine bacteria under starvation conditions, Mar. BioI. 48 :289–295.

    Google Scholar 

  • Olsson, J., Glantz, P.-O., and Krasse, B., 1976, Surface potential and adherence of oral streptococci to solid surfaces, Scand. J. Dent. Res. 84 :240–242.

    CAS  PubMed  Google Scholar 

  • Ørstavik, D., 1977, Sorption of streptococci to glass: effects of macromolecular solutes, Acta. Pathol. Microbiol. Scand. 85:47–53.

    Google Scholar 

  • Owens, D. K., and Wendt, R. C., 1969, Estimation of the surface free energy of polymers, J. Appl. Polym. Sci. 13:1741–1747.

    CAS  Google Scholar 

  • Paerl, H. W., 1976, Specific association of the blue-green algae Anabaena and Aphanizomenon with bacteria in freshwater blooms, J. Phycol. 12:431–435.

    Google Scholar 

  • Pertsovskaya, A. F., Duda, V. I., and Zvyagintsev, D. G., 1972, Surface ultrastructure of adsorbed microorganisms, Soviet Soil Sci. 4:684–689.

    Google Scholar 

  • Poindexter, J. S., 1981a, The caulobacters: ubiquitous unusual bacteria, Microbiol. Rev. 45: 123–179.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poindexter, J. S., 1981 b, Oligotrophy: fast and famine existence, in: Advances in Microbial Ecology, Vol. 5 (M. Alexander, ed.), Plenum Press, New York, 1981.

    Google Scholar 

  • Rheinheimer, G., 1980, Aquatic Microbiology (2nd ed.), John Wiley & Sons, Chichester.

    Google Scholar 

  • Rolla, G., 1980, On the chemistry of the matrix of dental plaque, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), pp. 425–439, Ellis Horwood Publ., Chichester.

    Google Scholar 

  • Roper, M. M., and Marshall, K. C., 1974, Modification of the interaction between Escherichia coli and bacteriophage in saline sediments, Microb. Ecol. 1:1–13.

    CAS  PubMed  Google Scholar 

  • Rutter, P., and Leech, R., 1980, The deposition of Streptococcus sanguis NCTC 7868 from a flowing suspension, J. Gen. Microbiol. 120:301–307.

    CAS  PubMed  Google Scholar 

  • Rutter, P., and Vincent, B., 1980, The adhesion of microorganisms to surfaces: physico-Chemical aspects, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter and B. Vincent, eds.), pp. 79–92, Ellis Horwood Publ., Chichester.

    Google Scholar 

  • Sanders, M. W., III, 1967, The growth and development of attached stream bacteria, Part I. Theoretical growth kinetics of attached stream bacteria, Water Resources Res. 3:81–87.

    CAS  Google Scholar 

  • Santoro, T., and Stotzky, G., 1967, Effect of cations and pH on the electrophoretic mobility of microbial cells and clay minerals, Bacteriol. Proc. 1967:A15.

    Google Scholar 

  • Saunders, P. T., and Bazin, M. J., 1973, Nonsteady state studies of nitrification in soil: theoretical considerations, Soil BioI. Biochem. 5:545–557.

    CAS  Google Scholar 

  • Shands, J. W., 1966, Localization of somatic antigen on gram-negative bacteria using ferritin antibody conjugates, Ann. N. Y. Acad. Sci. 133:292–298.

    CAS  PubMed  Google Scholar 

  • Sieburth, J. McN., 1968, The influence of algal antibiosis on the ecology of marine microorganisms, Adv. Microbiol. Sea 1:63–94.

    CAS  Google Scholar 

  • Sieburth, J. McN., 1975, Microbial Seascapes University Park Press, Baltimore.

    Google Scholar 

  • Sims, R. C., and Little, L., 1973, Enhanced nitrification by addition of clinoptilolite to tertiary activated sludge units. Environ. Lett. 4:27–34.

    CAS  PubMed  Google Scholar 

  • Stevenson, L. H., 1978, A case for dormancy in aquatic systems, Microb. Ecol. 4:127–133.

    Google Scholar 

  • Stotzky, G., 1966a, Influence of clay minerals on microorganisms II. Effect of various clay species, homionic clays, and other particles on bacteria, Can. J. Microbiol. 12:831–848.

    CAS  PubMed  Google Scholar 

  • Stotzky, G., 1966b, Influence of clay minerals on microorganisms III. Effect of particle size, cation exchange capacity and surface area on bacteria, Can. J. Microbiol. 12:1235–1246.

    CAS  PubMed  Google Scholar 

  • Stotzky, G., and Rem, L. T., 1966, Influence of clay minerals on microorganisms, I. ontmorillonite and kaolinite on bacteria, Can. J. Microbial. 12:547–563.

    CAS  Google Scholar 

  • Sutherland, I. W., 1980, Polysaccharides in the adhesion of marine and freshwater bacteria, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), pp. 329–338. Ellis Horwood Publ., Chichester.

    Google Scholar 

  • Sutherland, I. W., and Wilkinson, J. F., 1961, A new growth medium for virulent Bordetella pertussis, J. Path. Bact. 82:431–438.

    CAS  PubMed  Google Scholar 

  • Tabor, P. S., Ohwada, K., and Colwell, R. R., 1981, Filterable marine bacteria found in the deep sea: distribution, taxonomy, and response to starvation, Microb. Ecol. 7:67–83.

    CAS  PubMed  Google Scholar 

  • Tadros, T. F., 1980, Particle-surface adhesion, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), pp. 93–116, Ellis Horwood Publ., Chichester.

    Google Scholar 

  • Takakuwa, S., Fujimori, T., and Iwasaki, H., 1979, Some properties of cell-sulfur adhesion in Thiobacillus thiooxidans. J. Gen. Appl. Microbiol. 25:21–29.

    CAS  Google Scholar 

  • Tyler, P. A., and Marshall, K. C., 1967, Form and function in manganese-oxidizing bacteria, Arch. Mikrobiol. 56:344–353.

    CAS  Google Scholar 

  • Ward, J. B., and Berkeley, R. C. W., 1980, The microbial cell surface and adhesion, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), pp. 47–66, Ellis Horwood Publ., Chichester.

    Google Scholar 

  • Wardell, J. N., Brown, C. M., and Ellwood, D. C., 1980, A continuous culture study of the attachment of bacteria to surfaces, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), pp. 221–230, Ellis Horwood Publ., Chichester.

    Google Scholar 

  • Weise, W., and Rheinheimer, G., 1978, Scanning electron microscopy and epifluorescence investigation of bacterial colonization of marine sand sediments, Microb. Ecol. 4: 175–188.

    Google Scholar 

  • Weiss, L., 1961a, The measurement of cell adhesion, Exp. Cell Res. (Suppl.) 8:141–153.

    Google Scholar 

  • Weiss, L., 1961 b, Studies on cellular adhesion in tissue culture-IV. The alteration of substrata by cell surfaces. Exp. Cell Res. 25:504–517.

    CAS  PubMed  Google Scholar 

  • Wood, J. M., 1980, The interaction of microorganisms with ion exchange resins, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), pp. 163–185, Ellis Horwood Publ., Chichester.

    Google Scholar 

  • Wu, S., 1980, Surface tension of solids: generalisation and reinterpretation of critical surface tension, in: Adhesion and Adsorption of Polymers (L.-H. Lee, ed.), pp. 53–65, Plenum Press, New York.

    Google Scholar 

  • Zimmermann, R., Iturriaga, R., and Becker-Birck, J., 1978, Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration, Appl. Environ. Microbiol. 36:926–935.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zisman, W. A., 1964, Relation of the equilibrium contact angle to liquid and solid constitution, Adv. Chern. 43:1–51.

    CAS  Google Scholar 

  • ZoBell, C. E., 1943, The effect of solid surfaces upon bacterial activity, J. Bacteriol. 46:39–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zvyagintsev, D. G., and Velikanov, L. L., 1968, Influence of adsorbents on the activity of bacteria growing on media with amino acids, Microbiology 37:861–866.

    Google Scholar 

  • Zvyagintsev, D. G., Pertsovskaya, A. F., Yakhnin, E. D., and Averbakh, E. I., 1971, Adhesion value of microorganism cells to solid surfaces, Microbiology 40:889–893.

    Google Scholar 

  • Zvyagintsev, D. G., Guzev, V. S., and Guzeva, I. S., 1977, Relationship between adsorption of microorganisms and the stage of their development, Microbiology 46:245–249.

    Google Scholar 

  • Zvagintseva, I. S., and Zvyagintsev, D. G., 1969, Effect of microbial cell adsorption onto steroid crystals on the transformation of the steroid, Microbiology 38:691–694.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Fletcher, M., Marshall, K.C. (1982). Are Solid Surfaces of Ecological Significance to Aquatic Bacteria?. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8318-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8318-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8320-2

  • Online ISBN: 978-1-4615-8318-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics