Skip to main content

Biomass and Metabolic Activity of Heterotrophic Marine Bacteria

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 6))

Abstract

In the years since 1946, when ZoBell published his seminal book on marine microbiology, it has become evident that heterotrophic bacteria play an important role in nutrient cycling in the sea and that they are also basic members of the food web (Petipa et al., 1970; Sorokin, 1971, 1978; Pomeroy, 1970, 1974; Sieburth, 1976; Williams, 1981). Much evidence for this was obtained in the late 1960s and early 1970s, using the 14C-tracer technique introduced by Parsons and Strickland (1962). This technique enables the uptake of selected organic substrates by natural communities to be studied under in situ conditions. It could be shown that organisms smaller than 1–3 µ,m did indeed assimilate the largest fraction of these dissolved organic substrates when added to seawater samples in concentrations of a few micrograms per liter. As the information provided by the Parsons and Strickland technique is restricted to the fate of the selected substrates, several other methods for the determination of bacterial activity have been developed, giving more direct information on the dynamics of bacterial communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams, B. I., and Mitchell, M. J., 1980, Role of nematode-bacterial interactions in heterotrophic systems with emphasis on sewage sludge decomposition, Oikos 35:404–410.

    Google Scholar 

  • Allen, H. L., 1968, Acetate in fresh water: natural substrate concentrations determined by dilution bioassay, Ecology 49:346–349.

    Google Scholar 

  • Anderson, R. S., and Dokulil, M., 1977, Assessment of primary and bacterial production in three large mountain lakes in Alberta, Western Canada, Int. Rev. Ges. Hydrobiol. 62:97–108.

    CAS  Google Scholar 

  • Andrews, P., and Williams, P. J. LeB., 1971, Heterotrophic utilization of dissolved organic compounds in the sea. III. Measurement of the oxidation rates and concentrations of glucose and amino acids in sea water, J. Mar. Biol. Assoc. U.K. 51:111–125.

    CAS  Google Scholar 

  • APHA, 1971, Standard Methods for the Examination of Water and Wastewater (13th ed.), American Public Health Association, Washington D.C.

    Google Scholar 

  • Azam, F., and Holm-Hansen, O., 1973, Use of tritiated substrates in the study of heterotrophy in sea water, Mar. Biol. 23:191–196.

    CAS  Google Scholar 

  • Azam, F., and Hodson, R. E., 1977, Size distribution and activity of marine microheterotrophs, Limnal. Oceanogr. 22:492–501.

    CAS  Google Scholar 

  • Azam, F., Beers, J. R., Campbell, L., Carlucci, A. F., Holm-Hansen, O., Reid, F. M. H., and Karl, D. M., 1979, Occurrence and metabolic activity of organisms under the Ross Ice Shelf, Antartica, at Station J9, Science 203:451–453.

    CAS  Google Scholar 

  • Banse, K., 1974, On the role of the bacterioplankton in the tropical oceans, Mar. Biol. 24: 1–5.

    Google Scholar 

  • Barvenick, F. W., and Malloy, S. C., 1979, Kinetic patterns of microbial amino acid uptake and mineralization in marine waters, Est. Coast Mar. Sci. 8:241–250.

    Google Scholar 

  • Baskett, R. C., and Lulves, W. J., 1974, A method of measuring bacterial growth in aquatic environments using dialysis culture, J. Fish. Res. Bd. Can. 31:372–374.

    Google Scholar 

  • Bell, W. H., 1980, Bacterial utilization of algal extracellular products. 1. The kinetic approach, Limnal. Oceanogr.25:1007–1020.

    Google Scholar 

  • Bell, W. H., and Sakshaug, E., 1980, Bacterial utilization of algal extracellular products. 2. A kinetic study of natural populations, Limnol. Oceanogr. 25:1021–1033.

    Google Scholar 

  • Berman, T., 1975, Size fractionation of natural aquatic populations associated with autotrophic and heterotrophic carbon uptake, Mar. Biol. 33:215–220.

    Google Scholar 

  • Bowden, W. B., 1977, Comparison of two direct-count techniques for enumerating aquatic bacteria, Appl. Environ. Microbiol. 33:1229–1232.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brock, M. L., and Brock, T. D., 1968, The application of microautoradiographic techniques to ecological studies, Mitteil. Int. Ver. theor. Angew. Limnol. 15:1–29.

    Google Scholar 

  • Brock, T. D., 1967, Bacterial growth rate in the sea: direct analysis by thimidine autoradiography, Science 155:81–83.

    CAS  PubMed  Google Scholar 

  • Bryan, J. R., Riley, J. P., and Williams, P. J. LeB., 1976, A Winkler procedure for making precise measurements of oxygen concentration for productivity and related studies, J. Exp. Mar. Biol. Ecol. 21:191–197.

    CAS  Google Scholar 

  • Burnison, B. K., and Morita, R. Y., 1974, Heterotrophic potential for ammino acid uptake in a naturally eutrophic lake, Appl. Microbiol. 27:488–495.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burns, R. G., 1980, Microbial adhesion to soil surfaces: consequences for growth and enzyme activities, in: Microbial Adhesion to Surfaces (R. c. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), pp. 249–262, Ellis Horwood, Chichester.

    Google Scholar 

  • Carlucci, A. F., and Shimp, S. L., 1974, Isolation and growth of a marine bacterium in low concentrations of substrate, in: Effect of the Ocean Environment on Microbial Activities (R. R. Colwell and R. Y. Morita, eds.), pp. 363–367, Univ. Park Press, Baltimore.

    Google Scholar 

  • Carlucci, A. F., and Williams, P. M., 1978, Simulated in situ growth rates of pelagic marine bacteria, Naturwissenschaften 65:641–542.

    Google Scholar 

  • Christensen, J. P., Owens, T. G., Devol, A. H., and Packard, T. T., 1980, Respiration and physiological state in marine bacteria, Mar. Biol. 55:267–276.

    CAS  Google Scholar 

  • Copping, A. E., and Lorenzen, C. J., 1980, Carbon budget of a marine phytoplankton-herbivore system with carbon-14 as a tracer, Limnol. Oceanogr. 25:873–882.

    Google Scholar 

  • Corpe, W. A., 1974, Periphytic marine bacteria and the formation of microbial films on solid surfaces, in: Effect of the Ocean Environment on Microbial Activities (R. R. Colwell and R. Y. Morita, eds.), pp. 397–417, University Park Press, Baltimore.

    Google Scholar 

  • Corpe, W. A., and Winters, H., 1972, Hydrolytic enzymes of some periphytic marine bacteria, Can. J. Microbiol. 18:1483–1490.

    CAS  PubMed  Google Scholar 

  • Conover, T. J., 1978, Transformation of organic matter, in: Marine Ecology, Vol. IV, Dynamics (O. Kinne, ed.), pp. 221–499, John Wiley & Sons, Chichester.

    Google Scholar 

  • Coveney, M. F., Cronberg, G., Enell, M., Larsson, K., and Olafsson, L., 1977, Phytoplankton, zooplankton and bacteria-standing crop and production relationships in a eutrophic lake, Oikos 29:5–21.

    CAS  Google Scholar 

  • Crawford, C. C., Hobbie, J. E., and Webb, K. L., 1973, Utilization of dissolved organic compounds by microorganisms in an estuary, in: Estuarine Microbial Ecology (L. H. Stevenson and R. R. Colwell, eds.), pp. 169–180, Univ. South Carolina Press, Columbia.

    Google Scholar 

  • Dalay, R. J., and Hobbie, J. E., 1975, Direct counts of aquatic bacteria by a modified epifluorescence technique, Limnol. Oceanogr. 20:875–882.

    Google Scholar 

  • Darnell, R. M., 1967, Organic detritus in relation to the estuarine ecosystem, in: Estuaries (G. H. Lauff, ed.), pp. 376–382, Publ. A.A.A.S. no. 83, Washington, D.C.

    Google Scholar 

  • Davis, W. M., and White, D. C., 1980, Fluorometric determinations of adenosine nucleotide derivates as measures of the microfouling, detrital and sedimentary microbial biomass and physiological status, Appl. Environ. Microbiol. 40:539–548.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dawson, R., and Gocke, K., 1978, Heterotrophic activity in comparison to the free amino acid concentrations in balthic sea water samples, Oceanol. Acta 1:45–54.

    CAS  Google Scholar 

  • Derenbach, J. B., and Williams, P. J., Le B., 1974, Autotrophic and bacterial production: fractionation of plankton populations by different filtration of samples from the English Channel, Mar. Biol. 25:263–269.

    Google Scholar 

  • Devol, A. H., and Packard, T. T., 1978, Seasonal changes in respiratory enzyme activity and productivity in Lake Washington microplankton, Limnol. Oceanogr. 23:104–111.

    CAS  Google Scholar 

  • Droop M. R., 1974, Heterotrophy of carbon, in: Algal Physiology and Biochemistry, Bot. Mongr. 10 (W. D. P. Stewart, ed.), pp. 530–559, Blackwell, Oxford.

    Google Scholar 

  • Fallen, R. D., and Pfaender, F. K., 1976, Carbon metabolism in model microbial systems from temperate salt marsh, Appl. Environ. Microbiol. 31:959–968.

    Google Scholar 

  • Faust, M. A., and Correll, D. L., 1977, Autoradiographic study to detect metabolically active phytoplankton and bacteria in the Rhode River Estuary, Mar. Biol. 41:293–305.

    CAS  Google Scholar 

  • Federle, T. W., and Vestal, J. R., 1980, Lignocellulose mineralization by artic lake sediments in response to nutrient manipulation, Appl Environ. Microbiol. 40:32–39.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fenchel, T., 1980a, Relation between particle size selection and clearance in suspension-feeding ciliates, Limnol. Oceanogr. 25:733–738.

    Google Scholar 

  • Fenchel, T., 1980b, Suspension feeding in ciliated protozoa: functional response and particle size selection, Microb. Ecol. 6:1–11.

    CAS  PubMed  Google Scholar 

  • Fenchel, T., 1980c, Suspension feeding in ciliated protozoa: feeding rates and their ecological significance, Microb. Ecol. 6:13–25.

    CAS  PubMed  Google Scholar 

  • Fenchel, T., and Harrison, P., 1976, The significance of bacterial grazing and mineral cycling for the decomposition of particulate detritus, in: The Role of Terrestrial and Aquatic Organisms in Decomposition Processes (J. M. Anderson and A. MacFadyan, eds.) pp. 285–299, Blackwell, Oxford.

    Google Scholar 

  • Fenchel, T. M., and III Jrgensen, B. 8., 1977, Detritus food chains of aquatic ecosystems: the role of bacteria, in: Advances in Microbial Ecology, Vol. 1 (M. Alexander, ed.), pp. 3–37, Plenum Press, New York.

    Google Scholar 

  • Ferguson, R. L., and Rublee, P., 1976, Contribution of bacteria to standing crop of coastal plankton, Limnol. Oceanogr. 21:141–145.

    Google Scholar 

  • Ferguson, R. L., and Palumbo, A. V., 1979, Distribution of suspended bacteria in neritic waters south of Long Island during stratified conditions, Limnol. Oceanogr.24:697–705.

    Google Scholar 

  • Field, E. O., Dawson, K. B., and Gibbs, J. E., 1965, Autoradiographic differentiation of tritium and another beta-emitter by a combined color-coupling and double stripping film technique, Stain Technol. 40:295–300.

    CAS  PubMed  Google Scholar 

  • Fliermans, C. B., and Schmidt, E. L., 1975, Fluorescence microscopy: direct detection, enumeration and spatial distribution of bacteria in aquatic systems. Arch. Hydrobiol. 76:33–42.

    Google Scholar 

  • Forrest, W. W., 1969, Energetic aspects of microbial growth, 19th Symp. Soc. Gen. Microbiol. pp. 6–86, Cambridge Univ. Press, London.

    Google Scholar 

  • Francisco, D. E., Mah, R. A., and Rabin, A. C., 1973, Acridine-orange-epifluorescence technique for counting bacteria in natural waters, Trans. Am. Microsc. Soc. 92:416–421.

    CAS  PubMed  Google Scholar 

  • Fuhrman, J. F., 1981, Influence of method on the apparent size distribution of bacterioplankton cells: epiftuorescence microscopy compared to scanning electron microscopy, Mar. Ecol. Progr. Ser. 5:103–106.

    Google Scholar 

  • Fuhrman, J. A., and Azam, F., 1980, Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antartica and California, Appl. Environ. Microbiol. 39:1085–1095.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Furhman, J. A., Ammerman, J. W., and Azam, F., 1980, Bacterioplankton in the coastal euphotic zone: distribution, activity and possible relationships with phytoplankton, Mar. Biol. 60:201–207.

    Google Scholar 

  • Gagosian, R. B., and Lee, C., 1981, Processes controlling the distribution of biogenic organic compounds in seawater, in: Marine Organic Chemistry (E. K. Duursma and R. Dawson, eds.), pp. 91–123, Elsevier, Amsterdam.

    Google Scholar 

  • Gaudy, A. F., 1972, Biochemical oxygen demand, in: Water Pollution-Microbiology (R. Mitchell, ed.), pp. 305–322, John Wiley & Sons, New York.

    Google Scholar 

  • Geesey, G. G., and Morita, R. Y., 1979, Capture of arginine at low concentrations by a marine psychrophilic bacterium, Appl. Environ. Microbiol. 38:1092–1097.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gieskes, W. W. C., Kraay, G. W., and Baars, M. A., 1979, Current 14C methods for measuring primary production: gross underestimates in oceanic waters, Neth. J. Sea Res. 13:58–78.

    CAS  Google Scholar 

  • Gocke, K., 1976, Respiration von gelOSten organischen Verbindungen durch natUrliche Mikroorganismen Populationen. “Ein Vergleich zwischen verschiedenen Biotopen, Mar. Biol. 35:375–383.

    Google Scholar 

  • Gocke, K., 1977a, Heterotrophic activity, in: Microbial Ecology of a Brackish Water Environment (G. Rheinheimer, ed.), pp. 61–70, Springer-Verlag, Berlin.

    Google Scholar 

  • Gocke, K., 1977b, Comparison of methods for determining the turnover times of dissolved organic compounts, Mar. Biol. 42:131–141.

    CAS  Google Scholar 

  • Gocke, K., Dawson, R., and Liebezeit, G., 1981, Availability of dissolved free glucose to heterotrophic microorganisms, Mar. Biol. 62:209–216.

    CAS  Google Scholar 

  • Godlewska-Lipowa, W., 1969, Relationship between the generation time of a group of bacteria in water, and the exposure time and capacity of flasks, Bull. Acad. Pol. Sci. Cl. II, Vol. XVIII,41:233–237.

    Google Scholar 

  • Godlewska-Lipowa, W., 1970, Generation time of a group of bacteria in the water of Mazurian lakes, Pol. Arch. Hydrobiol. 17:117–120.

    Google Scholar 

  • Goodrich, T. D., and Morita, R. Y., 1977a, Incidence and estimation of chitinase activity associated with marine fish and other estuarine samples, Mar. Biol. 41:349–353.

    CAS  Google Scholar 

  • Goodrich, T. D., and Morita, R. Y., 1977b, Bacterial chitinase in the stomachs of marine fishes from Yaquina Bay, Oregon, U.S.A., Mar. Biol. 41:355–360.

    CAS  Google Scholar 

  • Goulder, R., 1977, Attached and free bacteria in an estuary with abundant suspended solids, J. Appl. Bacteriol. 43:399–405.

    Google Scholar 

  • HagstrOm, A., Larsson, U., Htsrstedt, P., and Normark, S., 1979, Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments, Appl. Environ. Microbiol. 37:805–812.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hall, C. A. S., and Moll, R., 1975, Methods of assessing aquatic primary productivity, in: Primary Productivity of the Biosphere (H. Lieth and R. H. Whittaker, eds.), pp. 19–53, Springer-Verlag, New York.

    Google Scholar 

  • Hamilton, R. D., 1973, Interrelationships between bacteria and protozoa, in: Estuarine Microbial Ecology. (L. H. Stevenson and R. R. Colwell, eds.), pp. 491–497, Univ. South Carolina Press, Columbia.

    Google Scholar 

  • Hamilton, R. D., and Preslan, J. E., 1970, Observations on heterotrophic activity in the eastern tropical Pacific, limnol. Oceanogr. 15:395–401.

    CAS  Google Scholar 

  • Hanson, R. B., and Wiebe, W. J., 1977, Direct measurement of dissolved organic carbon release by phytoplankton and incorporation by microheterotrophs, Mar. Biol. 42:321–330.

    Google Scholar 

  • Harris, G. P., 1978, Photosynthesis, productivity and growth: the physiological ecology of phytoplankton, Arch. Hydrobiol. Beih. 10:1–171.

    Google Scholar 

  • Harrison, P. G., and Mann, K. H., 1975, Detritus formation from eelgrass (Zostera marina): the relative effects of fragmentation, leaching and decay, Limnol. Oceanogr. 20:924–934.

    CAS  Google Scholar 

  • Harrison, M. J., Wright, R. Y., and Morita, R. Y., 1971, Method for measuring mineralization in lake sediments, Appl. Microbiol. 21:698–702.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harvey, R. J., 1970, Metabolic regulation in glucose-limited chemostat cultures of Escherichia coli. J. Bacteriol. 104:698–706.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harvey, R. V., and Young, L. Y., 1980, Enumeration of particle-bound and unattached respiring bacteria in the salt marsh environment, Appl. Environ. Microbiol. 40:156–160.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heinle, D. R., Harris, R. P., Ustach, J. F., and Flemer, D. A., 1977, Detritus as food for estuarine copepods, Mar. Biol. 40:341–353.

    Google Scholar 

  • Hellebust, J. A., 1970, The uptake and utilization of organic substances by marine phytoplankters, in: Organic Matter in Natural Waters (D. W. Hood, ed.), p. 225, Univ. of Alaska, Occasional Publication no. 1.

    Google Scholar 

  • Hobbie, J. E., 1976, Acridine orange as an indicator of the activity of bacteria, in: Abstr. 39th Meet. Amer. Soc. Limnol Oceanogr. Grafton, Wisconsin.

    Google Scholar 

  • Hobbie, J. E., and Crawford, C. C., 1969, Respiration corrections for bacterial uptake of dissolved organic compounds in natural waters, Limnol. Oceanogr. 14:528–532.

    CAS  Google Scholar 

  • Hobbie, J. E., and Wright, R. T., 1965, Competition between planktonic bacteria and algae for organic solutes, Mem. lst.ltal. ldrobiol. Suppl. 18:175–187.

    Google Scholar 

  • Hobbie, J. E., Holm-Hansen, O., Packard, T. T., Pomeroy, L. R., Sheldon, R. W., Thomas, J. P., and Wiebe, W. J., 1972, A study of the distribution and activity of microorganisms in ocean water, Limnol. Oceanogr. 17:544–555.

    Google Scholar 

  • Hobbie, J. E., Daley, R. J., and Jasper, S., 1977, Use of nucleopore filters for counting bacteria by fluorescence microscopy, Appl. Environ. Microbiol. 33:1225–1228.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hodson, R. E., Azam, F., Carlucci, A. F., Fuhrman, J. A., Karl, D. M., and Holm-Hansen, O., 1981, Microbial uptake of dissolved organic matter in McMurdo Sound, Antartica, Mar. Biol. 61:89–94.

    Google Scholar 

  • Hollibaugh, J. T., Carruthers, A. B., Fuhrman, J. A., and Azam, F., 1980, Cycling of organic nitrogen in marine plankton communties studied in enclosed water columns, Mar. Biol. 59:15–21.

    CAS  Google Scholar 

  • Holm-Hansen, O., 1973, The use of ATP determinations in ecological studies, Bull. Ecol. Res. Comm. (Stockholm) 17:215–222.

    CAS  Google Scholar 

  • Holm-Hansen, O., and Booth, C. R., 1966, The measurement of adenosine triphosphate in the ocean and its ecological significance, Limnol. Oceanogr. 11:510–519.

    CAS  Google Scholar 

  • Holm-Hansen, O., and Paerl, H. W., 1972, The applicability of ATP determination for estimation of microbial biomass and metabolic activity. Mem. 1st. Ital. Idrobiol. 29.149–168.

    CAS  Google Scholar 

  • Holm-Hansen, O., Packard, T. T., and Pomeroy, L. R., 1970, Efficiency of the reverse-flow filter technique for concentration of particulate matter, Limnol. Oceanogr. 15:832–834.

    Google Scholar 

  • Hoppe, H.-G., 1974, Untersuchungen zur Analyse mariner Bakterienpopulationen mit einer autoradiographischen Methode, Kieler Meeresfrsch. 30:107–116.

    Google Scholar 

  • Hoppe, H.-G., 1976, Determination of properties of actively metabolizing bacteria in the sea, investigated by means of microautoradiography, Mar. Biol. 36:291–302.

    Google Scholar 

  • Hoppe, H.-G., 1977, Analysis of actively metabolizing bacterial population with the autoradiographic method, in: Microbial Ecology of a Brackish Water Environment (G. Rheinheimer, ed.), pp. 171–197, Springer-Verlag, Berlin.

    Google Scholar 

  • Hoppe, H.-G., 1978, Relations between active bacteria and heterotrophic potential in the sea, Neth. J. Sea Res. 12:78–98.

    CAS  Google Scholar 

  • Ishida, Y., and Kadota, H., 1979, A new method for enumeration of oligotrophic bacteria in lake water, Arch. Hydrobiol. Beih. 12:77–85.

    Google Scholar 

  • Iturriaga, R., and Hoppe, H.-G., 1977, Observations of heterotrophic activity on photoassimilated organic matter, Mar. Biol. 40:101–108.

    Google Scholar 

  • Iturriaga, R., and Rheinheimer, G., 1975, Eine einfache Methode zur Auszlihlung von Bakterien mit aktivem Electronentransportsystem in Wasser und Sedimentproben, Kieler Meeresforsch. 31:83–86.

    Google Scholar 

  • Jannasch, H. W., 1963, Bakterielles Wachstum bei geringen Substratkonzentrationen, Arch. Mikrobiol. 45:323–343.

    CAS  PubMed  Google Scholar 

  • Jannasch, H. W., 1967, Growth of marine bacteria at limiting concentrations of organic carbon in seawater, Limnol. Oceanogr. 12:264–271.

    CAS  Google Scholar 

  • Jannasch, H. W., 1968, Growth characteristics of heterotrophic bacteria in seawater, J. Bacteriol. 95:722–723.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jannasch, H. W., 1969, Estimations of bacterial growth rates in natural waters, J. Bacteriol. 99: 156–160.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jannasch, H. W., and Jones, G. E., 1959, Bacterial populations in seawater as determined by different methods of enumeration, Limnol. Oceanogr. 4:128–129.

    Google Scholar 

  • Jannasch, H. W., and Pritchard, P. H., 1972, The role of inert particulate matter in the activity of aquatic microorganisms, Mem. 1st. Ital. Idrobiol. 29:289–308.

    CAS  Google Scholar 

  • Jassby, A. D., 1975, An evaluation of ATP estimates of bacterial biomass in the presence of phytoplankton, Limnol. Oceanogr. 20:646–648.

    CAS  Google Scholar 

  • Javornitsky, P., and Prokesova, V., 1963, The influence of protozoa and bacteria upon the oxidation of substances in water, Int. Rev. Ges. Hydrobiol. 48:335–350.

    Google Scholar 

  • Jensen, V., 1967, The plate count technique, in: The Ecology of Soil Bacteria (T.R.G. Gray and D. Parkinson, eds.), pp.158–170, Liverpool University Press, Liverpool.

    Google Scholar 

  • Johannes, R.E., 1965, Influence of marine protozoa on nutrient regeneration, Limnol. Oceanogr. 10:434–442

    Google Scholar 

  • Johannes, R.E., 1968, Nutrient regeneration in lakes and oceans, in: Advances in Microbiology of the Sea. Vol.1 (M.R. Droop and E.J.F. Wood, eds.), pp. 203–213, Academic Press, London.

    Google Scholar 

  • Johannes, R.E., and Satomi, M., 1967, Measuring organic matter retained by aquatic invertebrates, J. Fish. Res. Bd. Can. 24:2467–2471.

    CAS  Google Scholar 

  • Johnson, P.W., and Sieburth, J. McN., 1979, Chroococcoid cyanobacteria in the sea: a ubiquitous and diverse phototrophic biomass, Limnol. Oceanogr. 24:928–935.

    Google Scholar 

  • Jordan, M.J., and Likens, G.E., 1980, Measurement of planktonic bacterial production in an oligotrophic lake, Limnol. Oceanogr. 25:719–732.

    CAS  Google Scholar 

  • Karl, D.M., 1979, Measurement of microbial activity and growth in the ocean by rates of stable ribonucleic acid synthesis. Appl. Environ. Microbiol. 38:850–860.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karl, D.M., 1980, Cellular nucleotide measurements and applications in microbial ecology, Microbiol. Rev. 44:739–796.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karl, D. M., 1981, Simultaneous rates of RNA and DNA synthesis for estimating growth and cell division of aquatic microbial communities, Appl. Environ. Microbiol., 42:802–810.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karl, D. M., Winn, C. D., and Wong, D. C. L., 1981a, RNA synthesis as a measure of microbial growth 64:1–12 in aquatic environments. I Evaluation, verification and optimization of methods, Mar. Biol., 64:1–12.

    CAS  Google Scholar 

  • Karl, D. M., Winn, C. D., abd Wong, D. C L., 1981b, RNA synthesis as a measure of microbial growth in aquatic environments. II. Field applications, Mar. Biol., 64:13–21.

    CAS  Google Scholar 

  • Kelly, M. G., Hornberger, G. M., and Cosby, B. J., 1974, Continuous automated measurement of rates of photosynthesis and respiration in an undisturbed river community, Limnol. Oceanogr. 19:305–312.

    Google Scholar 

  • Kemp, W. M., and Boynton, W. R., 1980, Influence of biological and physical processes on dissolved oxygen dynamics in an estuarine system: implications for measurement of community metabolism, Est. Coast. Mar. Sci. 11:407–431.

    Google Scholar 

  • Kenner, R. A., and Ahmed, S. I., 1975a, Measurements of electron transport activities in marine phytoplankton, Mar. Biol. 33:119–127.

    CAS  Google Scholar 

  • Kenner, R. A., and Ahmed, S. t, 1975b, Correlation between oxygen utilization and electron transport activity in marine phytoplankton, Mar. Biol. 33:129–133.

    CAS  Google Scholar 

  • Kim, J., and Zobell, C. E., 1974, Occurrence and activities of cellfree enzymes in oceanic environments, in: Effect of the Ocean Environment on Microbial Activities (R. R. Colwell, and R. Y. Morita, eds.), pp. 368–385, Univ. Park Press, Baltimore.

    Google Scholar 

  • Koch, A. L.. 1979, Microbial growth in low concentrations of nutrients, in: Strategies of Microbial Life in Extreme Environments (M. Shilo ed.), pp. 261–279, Berlin, Dahlem Konferenzen, Verlag Chemie, Weinheim.

    Google Scholar 

  • Kogure, K., Simidu, U., and Taga, N., 1979, A tentative direct microscopic method for counting living marine bacteria, Can. J. Microbiol. 25:415–420.

    CAS  PubMed  Google Scholar 

  • Konings, W. N., and Veldkamp, H., 1980, Phenotypic response to environmental change, in: Contemporary Microbial Ecology (D. C. Ellwood, N. J. Hedger, M. J. Latham, J. M. Lynch, and J. H. Slater, eds.) pp. 161–191, Academic Press, London.

    Google Scholar 

  • Kornberg, H. L., 1966, Anaplerotic sequences and their role in metabolism in: Essays in Biochemistry, Vol. 2, (P. N. Campbell, and G. D. Greville, eds.), pp. 1–31, Academic Press, London.

    Google Scholar 

  • Krambeck, C., 1978, Changes in planktonic microbial populations-an analysis by scanning electron microscopy, Verh. Int. Ver. Limnol. 20:2255–2259.

    Google Scholar 

  • Krambeck, C, 1979, Applicability and limitations of the Michaelis-Menten equation in microbial ecology, Arch. Hydrobiol. Beih. 12:12–23.

    Google Scholar 

  • Kunicka-Goldfinger, W., 1973, An attempt to measure the growth of indigenous aquatic bacteria by the technique of semicontinuous cultures on membrane filters, in: Modern Methods in the Study of Microbial Ecology, Bull. Ecol. Res. Comm. (T. Rosswall, ed.), pp. 311–316, NFR Stockholm.

    Google Scholar 

  • Kunicki-Goldfinger, W. J. H., 1974, Methods in aquatic microbiology, A story of apparent precision and frustrated expectations. Pol. Arch. Hydrobiol. 21:3–17.

    Google Scholar 

  • Kuznetsov, S. t, and Romanenko, V. t, 1966, Produktion der Biomasse heterotropher Bakterien und die Geschwindigkeit ihrer Vermehrung im Rybinsk-Staussee, Verh. Int. Verein theor. angew. Limnol. 16:1493–1500.

    Google Scholar 

  • Kuznetsov, S. t, Dubinina, G. A., and Lapteva, N. A., 1979, Biology of oligotrophic bacteria, Ann. Rev. Microbiol. 33:377–387.

    CAS  Google Scholar 

  • Lampert, W., 1978, Release of dissolved organic carbon by grazing zooplankton, Limnol. Ocear,ogr. 23:831–834.

    CAS  Google Scholar 

  • Lancelot, C, 1979, Gross excretion rates of natural marine phytoplankton and heterotrophic uptake of excreted products in the Southern North Sea, as determined by short-term kinetics, Mar. Ecol. Progr. Ser. 1:179–186.

    CAS  Google Scholar 

  • LaRock, P. A., Lauer, R. D., Schwarz, J. R., Watanabe, K. K., and Wiesenburg, D. A., 1978, Microbial biomass and activity distribution in an anoxic, hypersaline basin, Appl. Environ. Microbiol. 37:466–470.

    Google Scholar 

  • Larsson, K., Weibull, C., and Cronberg, G., 1978, Comparison of light and electron microscopic determinations of the number of bacteria and algae in lake water, Appl. Environ. Microbiol. 35:397–404.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Larsson, U., and HagstrOm, A., 1979, Phytoplankton exudate release as an energy source for the growth of pelagic bacteria, Mar. Biol. 52:199–206.

    Google Scholar 

  • Larsson, U., and HagstrOm, A., 1982, Fractionated phytoplankton primary production, exudates release, and bacterial production in a balthic eutrophication gradient, Mar. Bioi.67:57–70.

    Google Scholar 

  • Law, A. T., and Button, D. K., 1977, Multiple-carbon-source-limited growth kinetics of a marine coryneform bacterium, J. Bacteriol. 77:115–123.

    Google Scholar 

  • Lehmicke, L. G., Williams, R. T., and Crawford, R. L., 1979, 14C-Most-Probable-Number method for enumeration of active heterotrophic microorganisms in natural waters, Appl. Environ. Microbiol. 38:644–649.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lewin, R. A., 1974, Enumeration of bacteria in seawater, Int. Rev. Ges. Hydrobiol. 59:611–619.

    Google Scholar 

  • Liebezeit, G., BOlter, M., Brown, I. F., and Dawson, R., 1980, Dissolved free amino acids and carbohydrates at pycnocline boundaries in the Sargasso Sea and related microbial activity, Oceanol. Acta 3:357–362.

    CAS  Google Scholar 

  • Lingeman, R., 1980, Analysis and interpretation of the diel and annual oxygen regimes in two aquatic ecosystems Ph.D. thesis, University of Amsterdam

    Google Scholar 

  • Litchfield, C. D., Rake, J. B., Zendulis, J., Watanabe, R. T., and Stein, D. J., 1975, Optimization of procedures for the recovery of heterotrophic bacteria from marine sediment, Microb. Ecol. 1:219–233.

    Google Scholar 

  • Little, J. E., Sjogren, R. E., and Carson, G. R., 1979, Measurement of proteolysis in natural waters, Appl. Environ. Microbiol. 37:900–908.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lloyd, G. I., and Morris, E. O., 1971, An apparatus for measuring microbial growth or survival in the marine environment, Mar. Biol. 10:295–296.

    Google Scholar 

  • Maaløe, O., and Kjeldgaard, N. O., 1966, Control of Macromolecular Synthesis: A Study of DNA. RNA and Protein Synthesis in Bacteria. W. A. Benjamin, New York.

    Google Scholar 

  • Mague, T. H., Friberg, E., Hughes, D. J., and Morris, I., 1980, Extracellular release of carbon by marine phytoplankton; a physiological approach, Limnol. Oceanogr. 25:262–279.

    CAS  Google Scholar 

  • Maeda, M., and Taga, N., 1979, Chromogenic assay method for lipopolysaccharide (LPS) for evaluating bacterial standing crop in seawater, J. Appl. Bacteriol. 47:175–182.

    CAS  PubMed  Google Scholar 

  • Maksimova, E. A., 1976, Annual cycle of bacterioplankton production in pelagic southern Baikal, Microbiology 45:146–149.

    Google Scholar 

  • Marshall, K. C., 1976, Interfaces in Microbial Ecology. Harvard Univ. Press, Cambridge.

    Google Scholar 

  • Marshall, K. C., 1980, Reactions of microorganisms, ions and macromolecules at interfaces, in: Contemporary Microbial Ecology (D. C. Ellwood, N. J. Hedger, M. J. Latham, J. M. Lynch, and J. H. Slater, eds.), pp. 93–106, Academic Press, London.

    Google Scholar 

  • Mateles, R. I., Ryu, D. Y., and Yasuda, T., 1965, Measurement of unsteady state growth rates of micro-organisms, Nature 208:263–265.

    CAS  PubMed  Google Scholar 

  • Matin, A., and Veldkamp H., 1978, Physiological basis of the selective advantage of a Spirillum sp. in a carbon-limited environment, J. Gen. Microbiol. 105:187–197.

    CAS  PubMed  Google Scholar 

  • Meyer-Rei!, L.-A., 1975, An improved method for the semicontinuous culture of bacterial populations on nuclepore membrane filters, Kieler Meeresforsch. 31:1–6.

    Google Scholar 

  • Meyer-Reil, L.-A., 1977, Bacterial growth rates and biomass production in: Microbial Ecology of a Brackish Water Environment (G. Rheinheimer, ed.), pp. 223–235, Springer-Verlag, Berlin.

    Google Scholar 

  • Meyer-Reil, L.-A., 1978a, Autoradiography and epifluorescence microscopy combined for the determination of number and spectrum of actively metabolizing bacteria in natural waters, Appl. Environ. Microbiol. 36:506–512.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer-Reil, L.-A., 1978b, Uptake of glucose by bacteria in the sediment, Mar. Biol. 44:293–298.

    Google Scholar 

  • Meyer-Reil, L.-A., 1981, Enzymatic decomposition of proteins and carbohydrates in marine sediments: methodology and field observations during spring, Kieler Meeresforsch Sonderh. 5:311–317.

    CAS  Google Scholar 

  • Meyer-Reil, L.-A., and Faubel, A., 1980, Uptake of organic matter by meiofauna organisms and interrelationships with bacteria, Mar. Ecol. Prog. Ser. 3:251–256.

    Google Scholar 

  • Meyer-Reil, L.-A., Dawson, R., Liebezeit, G., and Tiedge, H., 1978, Fluctuations and interactions of bacterial activity in sandy beach sediments and overlaying waters, Mar. Biol. 48: 161–171.

    CAS  Google Scholar 

  • Meyer-Reil, L.-A., Bölter, M., Liebezeit, G., and Schramm, W., 1979, Short-term variations in microbiological and chemical parameters, Mar. Ecol. Prog. Ser. 1:1–6.

    Google Scholar 

  • Meyer-Reil, L.-A., Bolter, M., Liebezeit, G., Szwerinski, H., and Wolter, K.,1980, Interrelationships between microbiological and chemical parameters of sandy beach sediments, a summer aspect, Appl. Environ. Microbiol. 39:797–802.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meynell, G. C., and Meynell, E. W., 1965, Theory and Practice in Experimental Bacteriology, Cambridge University Press, Cambridge.

    Google Scholar 

  • Mitamura, O., and Saijo, Y., 1975, Decomposition of urea associated with photosynthesis of phytoplankton in coastal waters, Mar. Biol. 30:67–72.

    CAS  Google Scholar 

  • Moaledj, K., and Overbeck, J., 1980, Studies on uptake kinetics of oligocarbophilic bacteria, Arch. Hydrobiol. 89:303–312.

    CAS  Google Scholar 

  • Moriarty, D. J. W., 1977, Improved method using muramic acid to estimate biomass of bacteria in sediments, Oecologia (Berlin) 26:317–323.

    Google Scholar 

  • Moriarty, D. J. W., 1979, Biomass of suspended bacteria over coral reefs, Mar. Biol. 53:193–200.

    Google Scholar 

  • Moriarty, D. J. W., and Pollard, P. C., 1981, DNA synthesis as a measure of bacterial productivity in seagrass sediments, Mar. Ecol. Prog. Ser. 5:151–156.

    Google Scholar 

  • Morrison, S. J., and White, D. C., 1980, Effects of grazing by estuarine gammaridean amphipods on the microbiota of allochthonous detritus, Appl. Environ. Microbiol. 40:659–671.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Munro, A. L. S., and Brock, T. D., 1968, Distinction between bacterial and algae utilization of soluble substances in the sea, J. Gen. Microbiol. 51:35–42.

    CAS  PubMed  Google Scholar 

  • Neilson, A. H., and Lewin, R. A., 1974, The uptake and utilization of organic carbon by algae: an essay in comparative biochemistry, 13:227–264.

    Google Scholar 

  • Newell, R., 1965, The role of detritus in the nutrition of two marine deposit-feeders, the prosobranch Hydrobia ulvae and the bivalve Macoma balthica, Proc. Zool. Soc. London 144:25–45.

    Google Scholar 

  • Newell, S. Y., and Christian, R. R., 1981, Frequency of dividing cells as an estimator of bacterial productivity, Appl. Environ. Microbiol. 42:23–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Novitsky, J. A., and Morita, R. Y., 1976, Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio, Appl. Environ. Microbiol. 32:617–622.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Odum, H. T., 1956, Primary production in flowing waters, Limnol. Oceanogr. 1:102–117.

    Google Scholar 

  • Odum, H. T., 1960, Analysis of diurnal oxygen curves for the assay of reaeration rates and metabolism in polluted marine bays, in: Waste Disposal in the Marine Environment (E. A. Pearson, ed.), pp. 547–555, Pergamon Press, Elmsford, N.Y.

    Google Scholar 

  • Odum, E. P., and de la Cruz, A. A., 1967, Particulate organic detritus in a Georgia salt marshestuarine ecosystem, in: Estuaries (G. H. Lauff, ed.), pp. 383–388, Publ. A.A.A.S. no. 83, Washington, D.C.

    Google Scholar 

  • Ogura, N., 1972, Rate and extent of decomposition of dissolved organic matter in surface seawater, Mar. Biol. 13:89–93.

    CAS  Google Scholar 

  • Olanczuk-Neyman, K. M., and Vosjan, J. H., 1977, Measuring respiratory electron-ransportsystem activity in marine sediment, Neth. J. Sea. Res. 11:1–13.

    CAS  Google Scholar 

  • Overbeck, J., 1972, Experimentelle Untersuchungen zur Bestimmung der Bakteriellen Produktion im See, Verh. into Verein theor. angew, Limnol. 18:176–187.

    Google Scholar 

  • Overbeck, J., 1976, Some remarks on the ecology of the CO2-metabolism of heterotrophic and methylotrophic bacteria, in: Microbial Production and Utilization of Gases (H. G. Schlegel, G. Gottschalk, and N. Pfennig, eds.), pp. 263–266, Goltze Verlag, Gottingen.

    Google Scholar 

  • Overbeck, J., 1979, Dark CO2 uptake-biochemical background and its relevance to in situ bacterial production, Arch. Hydrobiol. Beih. 12:38–47.

    Google Scholar 

  • Overbeck, J., and Dalay, R. J., 1973, Some precautionary comments on the Romanenko technique for estimating heterotrophic bacterial production, in: Modern Methods in the Study of Microbial Ecology (T. Rosswall, ed.), pp. 342–344, Stockholm.

    Google Scholar 

  • Packard, T. T., 1971, The measurement of respiratory electron transport activity in marine phytoplankton, J. Mar. Res. 29:235–244.

    Google Scholar 

  • Packard, T. T., Healy, M. L., and Richards, F. A., 1971, Vertical distribution of the activity of the respiratory electron transport system in marine plankton, Limnol. Oceanogr. 16:60–70.

    Google Scholar 

  • Paerl, H. W., 1974, Bacterial uptake of dissolved organic matter in relation to detrital aggregation in marine and freshwater systems, Limnol. Oceanogr. 19:966–972.

    Google Scholar 

  • Paerl, H. W., 1980, Attachment of microorganisms to living and detrital surfaces in freshwater systems, in: Adsorption of Microorganisms to Surfaces (G. Bitton and K. C. Marshall, eds.), pp. 375–402, Wiley Interscience, New York.

    Google Scholar 

  • Paerl, H. W., and Williams, N. J.,1976, The relation between adenosine triphosphate and microbial biomass in diverse aquatic ecosystems, Int. Rev. Ges. Hydrobiol. 61:659–664.

    CAS  Google Scholar 

  • Palumbo, A. V., and Ferguson, R. L., 1978, Distribution of suspended bacteria in the Newport River estuary, North Carolina, Est. Coast. Mar. Sci. 7:521–529.

    Google Scholar 

  • Parsons, T. R., and Strickland, J. D. H., 1962, On the production of particulate organic carbon by heterotrophic processes in seawater, Deep Sea Res. 8:211–222.

    Google Scholar 

  • Payne, W. H., 1970, Energy Yield and growth of heterotrophs, Annu. Rev. Microbiol. 24:17–52.

    CAS  PubMed  Google Scholar 

  • Payne, W. J., and Wiebe, W. J., 1978, Growth yield and efficiency in chemosynthetic microorganisms, Annu. Rev. Microbiol. 32:155–183.

    CAS  PubMed  Google Scholar 

  • Peterson, B. J., 1980, Aquatic primary productivity and the 14C-CO2 method: a history of the productivity problem, Annu. Rev. Ecol. Syst. 11:359–385.

    Google Scholar 

  • Petipa, T. S., Pavlova, E. V., and Mironov, G. N., 1970, The food web structure, utilization and transport of energy by trophic levels in the planktonic communities, in: Marine Food Chains (J. H. Steele, ed.) pp. 142–167, Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Pirt, S. J., 1975, Principles of Microbe and Cell Cultivation, Blackwell, Oxford.

    Google Scholar 

  • Pomeroy, L. R., 1970, The strategy of mineral cycling, Annu. Rev. Ecol. Syst. 1:171–190.

    Google Scholar 

  • Pomeroy, L. R., 1974, The ocean’s food web, a changing paradigm, Bioscience 24:499–504.

    Google Scholar 

  • Pomeroy, L. R., 1979, Secondary production of continental shelf communities, in: Ecological Processes in Coastal and Marine Systems (R. J. Livingston, ed.), pp. 163–186, Plenum Press, New York.

    Google Scholar 

  • Pomeroy, L. R., and Johannes, R. E., 1968, Occurrence and respiration of ultraplankton in the upper 500 metres of the ocean, Deep Sea Res. 15:381–391.

    Google Scholar 

  • Postgate, J. R., and Hunter, J. R., 1964, Accelerated death of Aerobacter aerogenes starved in the presence of growth-limiting substrates, J. Gen. Microbiol. 34:459–473.

    CAS  PubMed  Google Scholar 

  • Pugsley, A. P., and Evison, L. M., 1974, A membrane filtration staining technique for detection of viable bacteria in water, Water Treat. Exam. 23:205–214.

    Google Scholar 

  • Ramsay, A. J., 1974, The use of autoradiography to determine the proportion of bacteria metabolizing in an aquatic habitat, J. Gen. Microbiol. 80:363–373.

    Google Scholar 

  • Rasumov, A. S., 1932, Interrelation between bacteria and plankton in connection with some problems of water hygiene, in: Voprosy Sanitarnoj Bakteriologii Maskva, Izd. Acad. Med. Nauk. SSSR, pp. 30–43, (after Godlewska-Lipowa, 1970).

    Google Scholar 

  • Raetz, C. R. H., 1978, Enzymology, genetics and regulation of membrane phospholipid synthesis in Escherichia coli. Microbiol. ReV. 42:614–659.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodina, A. G., 1972, Methods in Aquatic Microbiology, Univ. Park Press, Baltimore.

    Google Scholar 

  • Romanenko, V. I., 1963, Potential ability of the microflora in water to heterotrophic CO2 assimilation and to chemosynthesis, Microbiology 32:569–574.

    Google Scholar 

  • Romanenko, V. I., 1964, Heterotrophic assimilation of CO2 by bacterial flora of water, Microbiology 33:610–614.

    Google Scholar 

  • Romanenko, V. I., 1965, Correlation between oxygen and carbon dioxide uptake in peptonegrown heterotrophic bacteria, Microbiology 34:334–339.

    Google Scholar 

  • Romanenko, V. I., and Dobrynin, E. G., 1978, Specific weight of the dry biomass of pure baeterial cultures, Microbiology 47:220–221.

    Google Scholar 

  • Rosenbaum, O. D., and Zamenhof F., 1972, Degree of participation of exogenous thymidine in the overall deoxyribonucleic acid synthesis in Escherichia coli, J. Bacteriol. 110:585–591.

    Google Scholar 

  • Saltzman, H. A., 1980, Untersuchungen über die Verlinderungen der Mikroflora beim Durchgang von Brackwasser durch die Kl1hlanlagen von Kraftwerken, Ph.D. thesis, University of Kiel, F.R.G.

    Google Scholar 

  • Schleyer, M. H., 1981, Microorganisms and detritus in the water column of a subtidal reef of Natal, Mar. Ecol. Prog. Ser. 4:307–320.

    Google Scholar 

  • Schurr, J. M., and Ruchti, J., 1977, Dynamics of O2 and CO2 exchange, photosynthesis and respiration in rivers from time-delayed corrections with ideal sunlight, limnol. Oceanogr. 22:208–225.

    CAS  Google Scholar 

  • Seki, H., 1972, The role of microorganisms in the marine food chain with reference to organic aggregates, Mem. 1st. Ital. Idrobiol. 29:245–259.

    Google Scholar 

  • Sen Gupta, R., and Jannasch, H. W., 1973, Photosynthetic production and dark assimilation of CO2 in the Black Sea, Int. Rev. Ges. Hydrobiol. 58:625–632.

    CAS  Google Scholar 

  • Sepers, A. B. J., 1977, The utilization of dissolved organic compounds in aquatic environments, Hydrobiologia 52:39–54.

    CAS  Google Scholar 

  • Sepers, A. B. J., 1979, De Aerobe Mineralisatie van Aminozuren in Natuurlijke Aquatische Milieus, Ph.D. thesis, Groningen, The Netherlands.

    Google Scholar 

  • Sepers, A. B. J., and Van Es, F. B., 1979, Heterotrophic uptake experiments with 14C-labeled histidine in a histidine-limited chemostat, Appl. Environ. Microbiol. 37:794–799.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seto, M., and Tazaki, T., 1971, Carbon dynamics in the food chain system of glucose-Escherichia coli-Tetrahymena vorax, Jpn. J. Ecol. 21:179–188.

    Google Scholar 

  • Sharp, J. H., 1977, Excretion of organic matter by marine phytoplankton: do healthy cells do it? Limnol. Oceanogr. 22:381–399.

    CAS  Google Scholar 

  • Sieburth, J. McN., 1976, Bacterial substrates and productivity in marine ecosystems, Annu. Rev. Ecol. Syst. 7:259–285.

    Google Scholar 

  • Sieburth, J. McN., 1979, Sea Microbes, Oxford University Press, New York.

    Google Scholar 

  • Sieburth, J. McN., Brooks, R. B., Gessner, R. V., Thomas, C. D., and Tootle, J. L., 1974, Microbial colonization of marine plant surfaces as observed by scanning electron microscopy, in: Effects of the Ocean Environment on Microbial Activities, (R. R. Colwell and R. Y. Morita, eds.), pp. 418–432, University Park Press, Baltimore.

    Google Scholar 

  • Sieburth, J. McN., Johnson, K. M., Burney, C. M., and Lavoie, D. M., 1977, Estimation of in situ rates of heterotrophy using diurnal changes in dissolved organic matter and growth rates of picoplankton in diffusion culture, Helgol. wiss. Meeresunters. 30:565–574.

    CAS  Google Scholar 

  • Skopintsev, B. A., 1973, A discussion of some views in the origin, distribution and composition of organic matter in deep ocean waters (translated from the Russian) Oceanology 12:471–474.

    Google Scholar 

  • Skopintsev, B. A., 1981, Decomposition of organic matter of plankton, humification and hydrol ysis, in: Marine Organic Chemistry (E. K. Duursma and R. Dawson, eds.), pp. 125–177, Elsevier, Amsterdam.

    Google Scholar 

  • Sorokin, Y. I., 1964, On the trophic role of chemosynthesis in water bodies, Int. Rev. Ges. Hydrobioi. 49:307–324.

    Google Scholar 

  • Sorokin, Y. I., 1971, On the role of the bacteria in the productivity of tropical oceanic waters, Int. Rev. Ges. Hydrobiol. 56:1–48.

    CAS  Google Scholar 

  • Sorokin, Y. I., 1973, Data on the biological productivity of the Western tropical Pacific Ocean, Mar. Biol. 20:177–196.

    Google Scholar 

  • Sorokin, Y. I., 1977, The heterotrophic phase of plankton succession in the Japan Sea, Mar. Biol. 41:107–117.

    Google Scholar 

  • Sorokin, Y. I., 1978, Decomposition of organic matter and nutrient regeneration, in: Marine Ecology, Vol. IV(O. Kinne, ed.), pp. 501–616, Wiley Interscience, Chichester.

    Google Scholar 

  • Sorokin, Y. I., and Kadota, H., 1972, Techniques for the assessment of microbial production and decomposition in fresh waters, International Biological Programme No. 23, Blackwell, Oxford.

    Google Scholar 

  • Spencer, M. J., 1979, Light-dark discrepancy of heterotrophic bacterial substrate uptake, FEMS Microbiol. Lett. 5:343–347.

    CAS  Google Scholar 

  • Steele, J. H., 1974, The Structure of Marine Ecosystems, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Steemann Nielsen, E., 1952, The rate of primary production and the size of the standing stock of zooplankton in oceans, Int. Rev. Ges. Hydrobiol. 57:513–516.

    Google Scholar 

  • Stephens, G. C., 1981, The trophic role of dissolved organic material, in: Analysis of Marine Ecosystems (A. R. Longhurst, ed.), pp. 271–291, Academic Press, London.

    Google Scholar 

  • Stevenson, L H., 1978, A case for bacterial dormancy in aquatic systems, Microb. Ecol. 4: 127- 133.

    Google Scholar 

  • Stouthamer, A. H., 1977, Energetic aspects of the growth of microorganisms, in: Microbial Energetics (B. A. Haddock and W. A. Hamilton, eds.), pp. 285–315, 27th Symp. Soc. Gen. Microbiol., Cambridge University Press, London.

    Google Scholar 

  • Stouthamer, A. H., 1979, The search for correlation between theoretical and experimental growth yields, Microbial Biochemistry, Vol. 21 (J. R. Quayle, ed.), pp. 1–47, University Park Press, Baltimore.

    Google Scholar 

  • Straat, P. A., Wolochow, H., Dimmick, R. L., and Chatigny, M. A., 1977, Evidence for incorporation of thymidine into deoxyribonucleic acid in airborne bacterial cells, Appl. Environ. Microbiol. 34:292–296.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Straskrabova, V., 1979, Oxygen methods for measuring the activity of water bacteria, Arch. Hydrobiol. Beih. 12:3–10.

    Google Scholar 

  • Strugger, S., 1949, Fluorescent microscope examination of bacteria in soil, Can. J. Res. 26: 288.

    Google Scholar 

  • Sullivan, J. D., Valois, F. W., and Watson, S. W., 1976, Endotoxins: the Limulus amebocyte lysate system, in: Mechanisms in Bacterial Toxinology (A. W. Bernheimer, ed.), pp. 217–236, John Wiley & Sons, New York.

    Google Scholar 

  • Taga, N., and Matsuda, O., 1974, Bacterial population attached to plankton and detritus in sea water, in: Effects of the Ocean Environment on Microbial Activities (R. R. Colwell and R. Y. Morita, eds.), pp. 443–448, University Park Press, Baltimore.

    Google Scholar 

  • Thomas, D. R., Richardson, J. A., and Dicker, R. J., 1974, The incorporation of tritiated thymidine into DNA as a measure of the activity of soil micro-organisms, Soil Biochem. 6:293–296.

    CAS  Google Scholar 

  • Torrella, F., and, Morita, R. Y., 1981, Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater, Appl. Environ. Microbiol. 41:518–527.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Toth, L. G., 1980, The use of dialyzing sacks in estimation of production of bacterioplankton and phytoplankton, Arch. Hydrobiol. 89:474–482.

    Google Scholar 

  • Ulitzur, S., Yagen, B., and Rottem, S., 1979, Determination of lipopolysaccharide by a bioluminescence technique, Appl. Environ. Microbiol. 37:782–784.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vläätänen, P., 1977, Effects of composition of substrate and inoculation technique on plate counts of bacteria in the Northern Baltic Sea, J. Appl. Bacteriol. 42(3):437–443.

    Google Scholar 

  • Vaccaro, R. F., 1969, The response of Natural microbial populations in seawater to organic enrichment, Limnol. Oceanogr. 14:726–735.

    CAS  Google Scholar 

  • Vaccaro, R. F., and Jannasch, H. W., 1966, Studies on heterotrophic activity in seawater based on glucose assimilation, Limnol. Oceanogr. 11:596–607.

    CAS  Google Scholar 

  • Vaccaro, R. F., and Jannasch, H. W., 1967, Variations in uptake kinetics for glucose by natural populations in seawater, Limnol. Oceanogr. 12:540–542.

    Google Scholar 

  • Van Veen, J. A., and Paul, E. A., 1979, Conversion of biovolume measurements of soil organisms grown under various moisture tensions, to biomass and their nutrient content, Appl. Environ. Microbiol. 37:686–692.

    PubMed Central  PubMed  Google Scholar 

  • Varga, G. A., Hargraves, P. E., and Johnson, P., 1975, Scanning electron microscopy of dialysis tubes incubated in flowing seawater, Mar. Biol. 31:113–120.

    Google Scholar 

  • Veldkamp, H., 1976, Continuous Culture in Microbial Physiology and Ecology, Meadowfield Press, Durham, pp. 1–68.

    Google Scholar 

  • Veldkamp, H., 1977, Ecological studies with the chemostat, in: Advances in Microbial Ecology, Vol. 1 (M. Alexander, ed.), pp. 59–94, Plenum Press, New York.

    Google Scholar 

  • Vollenweider, R. A., 1974, Primary production in aquatic environments, International Biological Programme Handbook no. 12 (2d ed.), Blackwell, Oxford.

    Google Scholar 

  • Vyshkvartsev, D. I., 1980, Bacterioplankton in shallow inlets of Posyeta Bay, Microbiology 48:603–609.

    Google Scholar 

  • Wangersky, P. J., 1977, The role of particulate matter in the productivity of surface waters, Helgol. Wiss. Meeresunters. 30:546–564.

    CAS  Google Scholar 

  • Wangersky, P. J., 1978, Production of dissolved organic matter in: Marine Ecology, Vol. IV (O. Kinne, ed.), pp. 115–220, Wiley Interscience, Chichester.

    Google Scholar 

  • Watson, S. W., Novitsky, T. J., Quinby, H. L., and Valois, F. W., 1977, Determination of bacterial number and biomass in the marine environment, Appl. Environ. Microbiol. 33:940–947.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wheeler, P., North, B., Littler, M., and Stephens, G., 1977, Uptake of glycine by natural phytoplankton communities, Limnol. Oceanogr. 22:900–910.

    CAS  Google Scholar 

  • Wiebe, W. J., and Pomeroy, L. R., 1972, Microorganisms and their association with aggregates and detritus in the sea: a microscopic study, Mem. 1st. Ital. Idrobiol. 29:325–352.

    Google Scholar 

  • Wiebe, W. J., and Smith, D. F., 1977a, 14C labeling of the compounds excreted by phytoplankton for employment as a realistic tracer in secondary productivity measurements, Microb. Ecol. 4:1–8.

    CAS  PubMed  Google Scholar 

  • Wiebe, W. J., and Smith, D. F., 1977b, Direct measurement of dissolved organic carbon release by phytoplankton and incorporation by microheterotrophs, Mar. Biol. 42:213–224.

    CAS  Google Scholar 

  • Williams, P. J. LeB., 1970, Heterotrophic utilization of dissolved organic compounds in the sea. I. Size distribution of population and relationship between respiration and incorporation of growth substrates, J. Mar. Biol. Assoc. U.K. 50:859–870.

    CAS  Google Scholar 

  • Williams, P. J. LeB., 1973a, On the question of growth yields of natural heterotrophic populations, in: Modern Methods in the Study of Microbial Ecology (T. Rosswall, ed.), pp. 400- 401, Bull. Ecol. Res. Comm., Stockholm.

    Google Scholar 

  • Williams, P. J. LeB., 1973b, The validity of the application of simple kinetic analysis to heterogeneous microbial populations, Limnol. Oceanogr. 18:159–165.

    Google Scholar 

  • Williams, P. J. LeB., 1975, Biological and chemical aspects of dissolved organic material in seawater, in: Chemical Oceanography, Vol. 2 (J. P. Riley and G. Skirrow, eds.), 2d ed., pp. 301–363, Academic Press, London.

    Google Scholar 

  • Williams, P. J. LeB., 1981, Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web. Kieler Meeresforsch. Sonderh. 5:1–28.

    Google Scholar 

  • Williams, P. J. LeB., and Askew, Co., 1968, A method for measuring the mineralization by microorganisms of organic compounds in seawater, Deep Sea Res. 15:365–375.

    CAS  Google Scholar 

  • Williams, P. J. LeB., and Gray, R. W., 1970, Heterotrophic utilization of dissolved organic compounds in the sea. II. Observations on the responses of heterotrophic marine populations to abrupt increases in amino acid concentration, J. Mar. Biol. Assoc. U.K. 50:871–881.

    CAS  Google Scholar 

  • Williams, P. J. LeB., and Yentsch, C. S., 1976, An examination of photosynthetic production, excretion of photosynthetic products and heterotrophic utilization of dissolved organic compounds with reference to results from a coastal subtropical sea, Mar. Biol. 35:31–40.

    CAS  Google Scholar 

  • Wilson, C. A., and Stevenson, L. H., 1980, The dynamics of the bacterial population associated with a salt marsh, J. Exp. Mar. Biol. Ecol. 48:123–138.

    Google Scholar 

  • Wolter, K., 1980, Untersuchungen zur Exsudation Organischer Substanz und deren Aufnahme durch NatUrliche Bakterienpopulationen, Ph.D. thesis, University of Kiel, F.R.G.

    Google Scholar 

  • Wood, L. W., 1973, Monosaccharide and disaccharide interactions on uptake and catabolism of carbohydrates by mixed microbial communities, in: Estuarine Microbial Ecology (L. H. Stevenson and R. R. Colwell, eds.), pp. 181–198, Univ. of South Carolina Press, Columbia.

    Google Scholar 

  • Wright, R. T., 1973, Some difficulties in using 14C-organic solutes to measure heterotrophic bacterial activity, in: Estuarine Microbial Ecology (L. H. Stevenson and R. R. Colwell, eds.), pp. 199–217, Univ. of South Carolina Press, Columbia.

    Google Scholar 

  • Wright, R. T., 1974, Mineralization of organic solutes by heterotrophic bacteria, in: Effects of the Ocean Environment on Microbial Activities (R. R. Colwell and R. Y. Morita, eds.), pp. 546–565, University Park Press, Baltimore.

    Google Scholar 

  • Wright, R. T., 1978, Measurement and significance of specific activities in the heterotrophic bacteria of natural waters, Appl. Environ. Microbiol. 36:297–305.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wright, R. T., and Hobbie, J. E., 1966, Use of glucose and acetate by bacteria and algae in aquatic ecosystems, Ecology 47:447–453.

    CAS  Google Scholar 

  • Zimmermann, R., 1975, Entwicklung und Anwendung von Fluoreszenz-und Rasterelektronenmikroskopischen Methoden zur Ermittiung der Bakterienmenge in Wasserproben, Ph.D. thesis, Kiel, F.R.G.

    Google Scholar 

  • Zimmerman, R., 1977, Estimation of bacterial number and biomass by epiftuorescence microscopy and scanning electron microscopy, in: Microbial Ecology of a Brackish Water Environment (G. Rheinheimer, ed.), pp. 103–120, Springer-Verlag, Berlin.

    Google Scholar 

  • Zimmerman, R., and Meyer-Reil, L. A., 1974, A new method for ftuorescence staining of bacterial populations on membrane filters, Kieler Meeresforsch. 30:24–27.

    Google Scholar 

  • Zimmerman, R., Iturriaga, R., and Becker-Birck, J., 1978, Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration, Appl. Environ. Microbiol. 36:926–935.

    Google Scholar 

  • ZoBell, C. E., 1946, Marine Microbiology. Chronica Botanica, Waltham, Mass.

    Google Scholar 

  • ZoBell, C. E., and Feltham, C. B., 1937, Bacteria as food for certain marine invertebrates, J. Mar. Res. 8:312–327.

    Google Scholar 

  • Zsolnay, A., 1975, Total labile carbon in the euphotic zone of the Baltic Sea as measured by BOD, Mar. Biol. 29:125–128.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

van Es, F.B., Meyer-Reil, LA. (1982). Biomass and Metabolic Activity of Heterotrophic Marine Bacteria. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8318-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8318-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8320-2

  • Online ISBN: 978-1-4615-8318-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics