Skip to main content

Factors Limiting Productivity of Freshwater Ecosystems

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 6))

Abstract

In considering environmental factors potentially limiting microbial productivity in fresh water, the spectrum of physical, chemical, and resulting biological properties distinguishing individual ecosystems must be realized and identified. The physical individuality of an aquatic ecosystem is a product of its geological origin and its geophysical (climatic and morphological) conditioning. Specific geochemical events, such as tectonic activity, volcanism, and weathering, have profound impacts on shaping the chemical environment (Hutchinson, 1957; Golterman, 1975a). Biological activity, particularly the redox transformations of growth-limiting elements, additionally modifies the chemical environment (Golterman, 1975a; Wetzel, 1975). Interactions of the general processes outlined above are largely responsible for shaping the biotic environment, including constraints on its productivity and diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, M., 1971, Microbial EcologyJohn Wiley & Sons, New York.

    Google Scholar 

  • Anderson, G., Cronberg, G., and Gelin, C., 1973, Planktonic changes following the restoration of Lake Trummen, Sweden, Ambio 2 :44–47.

    Google Scholar 

  • Arnon, D. I., 1958, Some functional aspects of inorganic micronutrients in the metabolism of green plants, in: Perspectives in Marine Biology (A. A. Buzzati-Traverso, ed.), pp. 351–383, Univ. of California Press, Berkeley.

    Google Scholar 

  • Arnon, D. I., and Wessel, G., 1953, Vanadium as an essential element for green plants, Nature 172:1039–1041.

    CAS  PubMed  Google Scholar 

  • Asato, Y., 1972, Isolation and characterization of ultraviolet light-sensitive mutants of the bluegreen alga Anacystis nidulans, J. Bacteriol. 110 :1058–1064.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Banse, K., 1976, Rates of growth, respiration and photosynthesis of unicellular algae as related to cell size-a review. J. Phycol. 12 :135–140.

    Google Scholar 

  • Beeton, A. M., 1969, Changes in the environment and biota of the Great Lakes, in: Eutrophication: Causes, Consequences, Correctives pp. 150–187, Natl. Acad. Sci., Washington, D.C.

    Google Scholar 

  • Benoit, J. R., 1957, Preliminary observations on cobalt and vitamin B12 in freshwater, Limnol. Oceanogr. 2 :233–240.

    Google Scholar 

  • Berman, T., 1970, Alkaline phosphatases and phosphorus availability in Lake Kinneret, Limnol. Oceanogr. 15 :663–674.

    CAS  Google Scholar 

  • Bitton, G., and Marshall, K. C. (eds.), 1980, Adsorption of Microorganisms to Surfaces, Wiley Interscience, New York.

    Google Scholar 

  • Bjälfve, G., 1962, Nitrogen fixation in cultures of algae and other microorganisms, Physiol. Plant. 15 :122–129.

    Google Scholar 

  • Blackman, F. F. 1905, Optima and limiting factors, Ann. Bot. 19 :281–295.

    Google Scholar 

  • Bortels, H., 1940, Uber dei bedeutung des molybdäns fur stickstoftbindende Nostocaceen, Arch. Microbiol. 11 :155–186.

    CAS  Google Scholar 

  • Burns, N. M., and Ross, C., 1972, Oxygen-nutrient relationships within the central basin of Lake Erie, in: Nutrients in Natural Waters (H. E. Allen and J. R. Kramer, eds.), pp. 193–250, John Wiley & Sons, New York.

    Google Scholar 

  • Burkholder, P. R., 1963, Some nutritional relationships among microbes of sea sediments and water, in: Symposium on Marine Microbiology (C. H. Oppenheimer, ed.), pp. 133–150, Charles C Thomas, Springfield, Ill.

    Google Scholar 

  • Caldwell, D. E., and Caldwell, S. J., 1978, A Zoogloea sp. associated with blooms of Anabaena jtos aquae, Can. J. Microbiol. 24 :922–931.

    CAS  PubMed  Google Scholar 

  • Carlucci, A. F., and Bowes, P. M., 1972, Determination of vitamin B12, thiamine, and biotin in Lake Tahoe waters using modified marine bioassay techniques, Limnol. Oceanogr. 17 :774-776.

    CAS  Google Scholar 

  • Chapman, A. G., Fall, L., and Atkinson, D. E., 1971, Adenylate energy charge in Escherichia coli during growth and starvation, J. Bacteriol. 108 :1072–1086.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clayton, R. K., 1966, Physical processes involving chlorophyll in vivo in: Chlorophylls: Physi cal. Chemical. and Biological Properties (L. P. Vernon and G. R. Seely, eds.), pp. 523–568, Academic Press, New York.

    Google Scholar 

  • Cronberg, G., Gelin, C., and Larsson, K., 1975, Lake Trummen restoration project. Ä. Bacteria, phytoplankton and phytoplankton productivity, Verh. Int. Verein. Limnol. 19 :1088–1096.

    Google Scholar 

  • Dillon, P. J., and Rigler, F. H., 1974, The phosphorus-chlorophyll relationship in lakes, Limnol. Oceanogr. 19 :767–773.

    CAS  Google Scholar 

  • Edmondson, W. T., 1972, Nutrients and phytoplankton in Lake Washington, in: Nutrients and Eutrophication: The Limiting Nutrient Controversy (G. E. Liken, Ed.), pp. 172–193, Am. Soc. Limnol. Oceanogr. Spec. Symp. 1., Allen Press, Lawrence, Kans.

    Google Scholar 

  • Edmondson, W. T.., 1977, Trophic equilibrium of Lake Washington, EPA Report 600/3–77-087.

    Google Scholar 

  • Eyster, C., 1952, Necessity of boron for Nostoc muscorum. Nature 170 :755–756.

    CAS  PubMed  Google Scholar 

  • Eyster, C., 1968, Microorganic and microinorganic requirements for algae, in: Algae. Man and the Environment (D. F. Jackson, ed.), pp. 27–36, Syracuse Univ. Press, Syracuse, N.Y.

    Google Scholar 

  • Fogg, G. E., Stewart, W. D. P., Fay, P., and Walsby, A. E., 1973, The Blue-Green Algae. Academic Press, New York.

    Google Scholar 

  • Gallucci, K. K., 1981, Algal-bacterial symbiosis in the Chowan River, N.C., MSc. thesis, Univ. of North Carolina, Chapel Hill, N.C.

    Google Scholar 

  • Gerhart, D. W., and Likens, G. E., 1975, Enrichment experiments for determining nutrient limitation: four methods compared, Limnol. Oceanogr. 20 :649–653.

    Google Scholar 

  • Goldman, C. R., 1960, Molybdenum as a factor limiting primary productivity in Castle Lake, California, Science 132 :1016–1017.

    CAS  PubMed  Google Scholar 

  • Goldman, C. R., 1964, Primary productivity and micronutrient limiting factors in some North American and New Zealand Lakes. Verh. Int. Verein. Limnol. 15 :365–374.

    Google Scholar 

  • Goldman, C. R., 1966, Micronutrient limiting factors and their detection in natural phytoplankton populations, in: Primary Productivity in Aquatic Environments (C. R. Goldman, ed.), pp. 123–125, Univ. of California Press, Berkeley

    Google Scholar 

  • Goldman, C. R., 1972, The role of minor nutrients in limiting the productivity of aquatic ecosystems, in: Nutrients and Eutrophication (G. E. Likens, ed.), pp. 21–38, Am. Soc. Limnol. Oceanogr. Spec. Symp. 1. Allen Press, Lawrence, Kans.

    Google Scholar 

  • Goldman, C. R., and Carter, R., 1965, An investigation by rapid C-14 bioassay of factors affecting the cultural eutrophication of Lake Tahoe, California-Nevada, J. Water Pollut. Contr. Fed. 37:1044–1059.

    CAS  Google Scholar 

  • Goldman, C. R., and Armstrong, R., 1968, Primary productivity studies in Lake Tahoe, California, Verh.lnt. Verein. Theor. Angew. Limnol. 17 :49–71.

    CAS  Google Scholar 

  • Golterman, H. L., 1975a, Physiological Limnology. Elsevier, New York.

    Google Scholar 

  • Golterman, H. L., 1975b, Chemistry of running water, in: River Ecology (B. Whitton, Ed.), pp. 234–271, Blackwell, Oxford.

    Google Scholar 

  • Graham, D., Atkins, C. A., Reed, M. L., Patterson, B. D., and Smillie, R. M., 1971, Carbonic anhydrase, photosynthesis and light-induced pH changes, in: Photosynthesis and Photorespiration (M. D. Hatch, C. B. Osmond, and R. A. Slayter, Eds.), pp. 267–274, Wiley-Interscience, New York.

    Google Scholar 

  • Griffith, E. J., Beeton, A. M., Spencer, J. M., and Mitchell, D. T. (eds.), 1973, Environmental Phosphorus Handbook. John Wiley & Sons, New York.

    Google Scholar 

  • Holland, H. D., 1978, The Chemistry o/the Atmosphere and Oceans. Wiley-Interscience, New York.

    Google Scholar 

  • Holland, R. E., 1969, Seasonal fluctuations of Lake Michigan diatoms, Limnol. Oceanogr. 14:423–436.

    CAS  Google Scholar 

  • Holm-Hansen, O., Gerloff, G. C., and Skoog, F., 1954, Cobalt as an essential element for bluegreen algae, Physiol. Planta. 7 :665–675.

    CAS  Google Scholar 

  • Hopkins, E. F., 1930, The necessity and function of manganese in the growth of Chlorella sp., Science 72 :609–610.

    CAS  PubMed  Google Scholar 

  • Hutchinson, G. E., 1957, A Treatise on Limnology. Vol. 1, John Wiley & Sons, New York.

    Google Scholar 

  • Hutchinson, G. E., 1961, The paradox of the plankton, Am. Nat. 95 :137–145.

    Google Scholar 

  • Ingle, R. K., and Colman, B., 1975, Carbonic anhydrase levels in blue-green algae, Can. J. Bot. 53:2385–2387.

    CAS  Google Scholar 

  • Jannasch, H. W., and Pritchard, P. H., 1972, The role of inert particulate matter in the activity of aquatic microorganisms, in: Detritus and its Role in Aquatic Ecosystems (U. Santollini and J. W. Hopton, eds.), pp. 289–308, 1st. Ital. Idrobiol. 29 Suppl., Pallanza, Italy.

    Google Scholar 

  • Joint Industry/Government Task Force on Eutrophication, 1969, Provisional algal assay procedure, Washington, D.C.

    Google Scholar 

  • Jones, J. R., and Bachmann, R. W., 1975, Algal response to nutrient inputs in some Iowa lakes, Verh. Int. Verein. Limnol. 19 :904–910.

    Google Scholar 

  • Karl, D. M., 1980, Cellular nucleotide measurements and applications in microbial ecology, Microbiol. Rev. 44 :739–796.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kellar, P. E., and Paerl, H. W., 1980, Physiological adaptations in response to environmental stress during an Nrfixing Anabaena bloom, Appl. Environ. Microbiol. 40 :587–595.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kerr, P. C., Paris, D. F., and Brockway, D. L., 1970, The Interrelation oJ Carbon and Phosphorus in Regulating Heterotrophic and Autotrophic Populations in Aquatic Ecosystems. U.S. Govt. Printing Office, Washington, D.C.

    Google Scholar 

  • Kerr, P. C., Brockway, D. C., Paris, D. G., and Barnett, J. T., 1972, The interrelation of carbon and phosphorus in regulating heterotrophic and autotrophic populations in an aquatic ecosystem, Shriners Pond, in: Nutrients and Eutrophication: The Limiting Nutrient Controversy (G. E. Likens, ed.), pp. 41–62, Am. Soc. Limnol. Oceanogr. Spec. Symp. I., Allen Press, Lawrence, Kans.

    Google Scholar 

  • Kiefer, D. A., Holm-Hansen, O., Goldman, C. R., Richards, R., and Berman, T., 1972, Phytoplankton in Lake Tahoe: deep living populations, Limnol. Oceanogr. 17 :418–422.

    Google Scholar 

  • Kilham, P., 1971, A hypothesis concerning silica and the freshwater planktonic diatoms, Limnol. Oceanogr. 16 :10–18.

    Google Scholar 

  • Kolenbrander, G. J., 1972, The eutrophication of surface water by agriculture and the urban population, StikstoJ 15 :56–67.

    Google Scholar 

  • Kuentzel, L. E., 1969, Bacteria, carbon dioxide, and algal blooms, J. Water Poll. Contr. Fed. 41:1737–1747.

    CAS  Google Scholar 

  • Kuhl, A., 1968, Phosphate metabolism of green algae, in: Algae. Man and the Environment (D. F. Jackson, ed.), pp. 37–52, Syracuse Univ. Press, Syracuse, N.Y.

    Google Scholar 

  • Lange, W., 1970, Cyanophyta-bacteria systems: effects of added carbon compounds or phosphate on algal growth at low nutrient concentrations, J. Phycol. 6 :230–234.

    CAS  Google Scholar 

  • Lange, W., 1971, Enhancement of algal growth in cyanophyta-bacteria systems by carbonaceous compounds, Can. J. Microbiol. 17 :303–314.

    CAS  PubMed  Google Scholar 

  • Lange, W., 1973, Bacteria assimilable organic compounds, phosphate and enhanced growth of bacteria associated blue-green algae, J. Phycol. 9 :507–509.

    Google Scholar 

  • Lange, W., 1976, Speculations on a possible essential function of the gelatinous sheath of bluegreen algae, Can. J. Microbiol. 22 :1181–1185.

    CAS  PubMed  Google Scholar 

  • Lean, D. R. S., 1973, Movements of phosphorus between its biologically important forms in lake water, J. Fish. Res. Bd. Can. 30 :1525–1536.

    CAS  Google Scholar 

  • Lehman, J. T., 1980, Release and cycling of nutrients between planktonic algae and herbivores, Limnol. Oceanogr. 25: 620–632.

    CAS  Google Scholar 

  • Lehman, J. T., Botkin, D. B., and Likens, G. E., 1975, Lake eutrophication and the limiting CO2 concept: a simulation study, Verh. Int. Verein. Limnol. 19 :300–307.

    Google Scholar 

  • Liebig, J., 1840, Organic Chemistry in its Applications to Agriculture and Physiology [English translation by L. Playfairj, Taylor and Walton, London.

    Google Scholar 

  • Likens, G. E., 1972, Eutrophication and aquatic ecosystems, in: Nutrients and Eutrophication: The Limiting Nutrient Controversy (G. E. Likens, ed.), pp. 3–13 Am. Soc. of Limnol. Oceanogr. Spec. Symp. I., Allen Press, Lawrence, Kansas.

    Google Scholar 

  • Lindstrom, K., 1980, Bioassays of selenium in Lake Erken, Sweden, Arch. Hydrobiol. 89 :110-117.

    Google Scholar 

  • Lund, J. W. G., 1950, Studies on Asterionella formosa Hass. II. Nutrient depletion and the spring maximum, J. Ecol. 38: 1–14.

    Google Scholar 

  • Lund, J. W. G., Mackereth, F. J. H., and Mortimer, C. H., 1963, Changes in depth and time of certain chemical and physical conditions and of the standing crop of Asterionella Formosa Hass in the North Basin of Windermere in 1947, Phil. Trans. Roy. Soc., B. 246 :255-290.

    Google Scholar 

  • Madsen, B. L., 1972, Detritus on stones in small streams, in: Detritus and its Role in Aquatic Ecosystems (V. Santolline and J. W. Hopton, Eds.), pp. 385–403, Mem. 1st. Ital. Idrobiol. 29 Suppl., Pallanza, Italy.

    Google Scholar 

  • Maloney, T. E., Miller, W. E., and Shiroyama, T., 1972, Algal responses to nutrient additions in natural waters. I. Laboratory assays, in: Nutrients and Eutrophication: The Limiting Nutrient Controversy pp. 134–140, (G. E. Likens, ed.), Am. Soc. Limnol. Oceanogr. Spec. Symp. 1., Allen Press, Lawrence, Kans.

    Google Scholar 

  • McColl, R. H. S., White, E., and Waugh, J. R., 1975, Chemical run-off in catchments converted to agricultural use, New Zealand J. Sci. 18 :67–84.

    CAS  Google Scholar 

  • Melack J., Kilham, P., and Fisher, T. R., 1982, Responses of phytoplankton to experimental fertilization with ammonium and phosphate in an African soda lake, Oecologia (in press).

    Google Scholar 

  • Melchiorri-Santolini, V. and Hopton, J. W. (eds.), 1972, Detritus and its Role in Aquatic Ecosystems Mem. 1st. Ital. Idrobiol. 29 Suppl., Pallanza, Italy.

    Google Scholar 

  • Menzel, D. W., and Ryther, J. H., 1961, Nutrients limiting production of phytoplankton in the Sargasso Sea with special reference to iron, Deep-Sea Res. 7 :276–281.

    CAS  Google Scholar 

  • Miller, W. E., Green, J. C., and Shiroyama, T., 1978, The Selenastrum capricornutum Printz algal assay bottle test, V.S. Environmental Protection Agency, Corvallis, Oreg.

    Google Scholar 

  • Morton, S. D., Sernau, R., and Derse, P. H., 1972, Natural carbon sources, rates of replenishment, and algal growth, in: Nutrients and Eutrophication: The Limiting Nutrient Controversy (G. E. Likens, ed.), pp. 197–204, Soc. Limnol. Oceanogr. Spec. Symp. I., Allen Press, Lawrence, Kans.

    Google Scholar 

  • Moss, B., 1973, The influence of environmental factors on the distribution of freshwater algae: an experimental study. II. The role of pH and the carbon dioxide-biocarbonate system, J. Ecol. 61 :157–177.

    CAS  Google Scholar 

  • Murphy, T. P., Lean, D. R. S., and Nalewajko, C., 1965, Blue-green algae: their excretion of iron-selective chelators enables them to dominate other algae, Science 192 :900–901.

    Google Scholar 

  • Neilands, J. B. (ed.), 1974, Microbial Iron Metabolism: A Comprehensive Treatise Academic Press, New York.

    Google Scholar 

  • Nelson, E. B., Cenedella, A., and Tolbert, N. E., 1969, Carbonic anhydrase levels in Chlamydomonas, Phytochemistry 8 :2305–2306.

    CAS  Google Scholar 

  • Newton, W., Postgate, J. R., and Rodriquez-Barrueco, C., (eds.), 1977, Recent Developments in Nitrogen Fixation Academic Press, London.

    Google Scholar 

  • Nusch, E. A., 1975, Comparative investigations of extent, causes and effects of eutrophication in Western German reservoirs, Verh. Int. Verein. Limnol. 19 :1871–1879.

    Google Scholar 

  • Oláh, J., 1972, Leaching, colonization and stabilization during detritus formation, in: Detritus and its Role in Aquatic Ecosystems (u. Santollini and J. W. Hopton, eds.), pp. 105–127, Mem. 1st. Ital. Idrobiol. 29 Suppl., Pallanza, Italy.

    Google Scholar 

  • Otsuki, A., and Wetzel, R. G., 1972, Coprecipitation of phosphate with carbonates in a marl lake, Limnol. Oceanogr. 17 :763–767.

    CAS  Google Scholar 

  • Paerl, H. W., 1974, Bacterial uptake of dissolved organic matter in relation to detrital aggregation in marine and freshwater systems, Limnol. Oceanogr. 19 :966–972.

    Google Scholar 

  • Paerl, H. W., 1975, Microbial attachment to particles in marine and freshwater ecosystems, Microbiol. Ecol. 2 :73–83.

    CAS  Google Scholar 

  • Paerl, H. W., 1979, Optimization of carbon dioxide and nitrogen fixation by the blue-green algae Anabaena in freshwater blooms, Decologia 32 :135–139.

    Google Scholar 

  • Paerl, H. W., and Goldman, C. R., 1972, Stimulation of heterotrophic and autotrophic activities of a planktonic microbial community by siltation of Lake Tahoe, California, in: Detritus and its Role in Aquatic Ecosystems (U. Santollini and J. W. Hopton, eds.), pp. 129–147, Mem. 1st. Ital. Idrobiol. 29 Suppl., Paäanza, Italy.

    Google Scholar 

  • Paerl, H. W., and Kellar, P. E., 1978, Significance of bacterial-Anabaena (Cyanophyceae) associations with respect to Nz fixation in freshwater, J. Phycol. 14 :254–260.

    Google Scholar 

  • Paerl, H. W., and Kellar, P. E., 1979, N2-fixing Anabaena: Physiological adaptations instrumental in maintaining surface blooms, Science 204 :620–622.

    CAS  PubMed  Google Scholar 

  • Paerl, H. W., and Ustach, J. F., 1981, Blue-green algal scums: an explanation for their occurrence during freshwater blooms, Umnal. Oceanogr. 27 :212–217.

    Google Scholar 

  • Paerl, H. W., Richards, R. C., Leonard, R. L., and Goldman, C. R., 1975, Seasonal nitrate cycling as evidence for complete vertical mixing in Lake Tahoe, California-Nevada, Limnal. Oceanogr. 20 :1–8.

    CAS  Google Scholar 

  • Paerl, H. W., Tilzer, M. M., and Goldman, C. R., 1976, Chlorophyll a versus adenosine triphosphate as algal biomass indicators in lakes, J. Phycol. 12 :242–246.

    CAS  Google Scholar 

  • Patalas, K., 1972, Crustacean plankton and the eutrophication of St. Lawrence Great Lakes, J. Fish. Res. Bd. Can. 29 :1451–1462.

    CAS  Google Scholar 

  • Pleisch, P., 1970, Die herkunft eutrophierender stoffe beim Pfäffiker- und Greifensee, Vierteljahresschr. Naturforsch. Ges. Zurich 115 :127–129.

    CAS  Google Scholar 

  • Provasoli, L., 1960, Micronutrients and heterotrophy as possible factors in bloom production in natural waters, in: Trans. Semin. Algae and Metropolitan Wastes, U.S. Public Health Service, R. A. Taft Sanit. Eng. Center, Cincinnati, Ohio.

    Google Scholar 

  • Provasoli, L., 1963, Growing marine seaweeds, Proc. Int. Seaweed Symp. 4:9–17. Pergamon Press, Oxford.

    Google Scholar 

  • Remane, A., and Schlieper, C., 1971, Biology of Brackish Water Wiley-Interscience, New York.

    Google Scholar 

  • Reynolds, C. S., and Walsby, A. E., 1975, Water blooms, Bioi. Rev. 50 :437–481.

    CAS  Google Scholar 

  • Richerson, P. J., Armstrong R, and Goldman, C. R., 1970, Contemporaneous disequilibrium, a new hypothesis to explain the “paradox of the plankton,” Proc. Natl. Acad. Sci. U.S.A. 67:1710–1714.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rigler, F. H., 1973, A dynamic view of the phosphorus cycle in lakes. in: Environmental Phosphorus Handbook (E. J. Griffith, A. Beeton, J. M. Spencer, and D. T. Mitchell, eds.) pp. 539–572, John Wiley & Sons, New York.

    Google Scholar 

  • Round, F. E., 1965, The Biology of the Algae St. Martin’s Press, New York.

    Google Scholar 

  • Ryther, J. H., and Guillard, R. R. L., 1959, Enrichment experiments as a means of studying nutrients limiting to phytoplankton production, Deep-Sea Res. 6 :65–69.

    Google Scholar 

  • Schelske, C. L., 1962, Iron, organic matter, and other factors limiting primary productivity in a marl lake, Science 136 :45–46.

    CAS  PubMed  Google Scholar 

  • Schelske, C. L., and Stoermer, E. F., 1971, Eutrophication, silica depletion and predicted changes in algal quality in lake Michigan, Science 173 :423–424.

    CAS  PubMed  Google Scholar 

  • Schelske, C. L., and Stoermer, E. F., 1972, Phosphorus, silica, and eutrophication of Lake Michigan, in: Nutrients and Eutrophication (G. E. Likens, ed.), pp. 157–171, Amer. Soc. Limnol. Oceanogr. Spec. Symp. I., Allen Press, Lawrence, Kans.

    Google Scholar 

  • Schelske, C. L., Rothman, E. D., and Simmons, M. S., 1978, Comparison of bioassay procedures for growth-limiting nutrients in the Laurentian Great Lakes, Mitt. Intern. Limnol. 21 :65.-80.

    Google Scholar 

  • Schindler, D. W., and Fee, E. J., 1973, Diurnal variations of dissolved inorganic carbon and its use in estimating primary production and CO2 invasion in Lake 227, J. Fish. Res. Bd. Can. 30:1501–1510.

    CAS  Google Scholar 

  • Schindler, D. W., Kling, H., Schmidt, R. V., Prokopowich, J., Frost, V. E., Reid, R. A., and Capel, M., 1973, Eutrophication of Lake 227 by addition of phosphate and nitrate: the second, third and fourth years of enrichmant 1970, 1971, and 1972, J. Fish. Res. Bd. Can. 30:1415–1440.

    CAS  Google Scholar 

  • Shapiro, J., 1964, Effect of yellow acids on iron and other metals in water, J. Am. Water Works Assoc. 56:1062–1082.

    CAS  Google Scholar 

  • Shapiro, J., 1969, Iron in natural waters-its characteristics and biological availability as determined with the ferrigram. Verh. Int. Verein. Theor. Angew. Limnol. 17 :456–466.

    Google Scholar 

  • Shapiro, J., 1973, Blue-green algae: why they become dominant, Science 179 :382–384.

    CAS  PubMed  Google Scholar 

  • Shapiro, J., and Glass, G. E., 1970, Chemical factors stimulating growth of Lake Superior algae, in: Proceedings of the Conference on the Biology of Lake Superior (G. E. Glass, ed.), p. 17, Environmental Protection Agency, Duluth, Minn.

    Google Scholar 

  • Shapiro, J., and Glass, G. E., 1975, Synergistic effects of phosphate and manganese on growth of Lake Superior algae, Verh. Int. Verein. Limnol. 19 :395–404.

    Google Scholar 

  • Shiroyama, T., Miller, W. E., and Green, J. C., 1976, Comparison of the algal growth responses of Selenastrum capricornutum Printz and Anabaena flos-aquae (Lyngb.) DeBrebisson in waters collected from Shagawa Lake, Minnesota, in: Biostimulation and Nutrient Assessment (E. J. Middlebrooks, D. H. Falkenborg, and T. E. Maloney, eds), pp. 127–148, Ann Arbor Science Publishers, Ann Arbor, Mich.

    Google Scholar 

  • Stanier, R. Y., Douderoff, M., and Adelberg, E. A., 1963, The Microbial World (2nd ed.), Prentice- Hail, Englewood Cliffs, N.J.

    Google Scholar 

  • Steeman Nielsen, E., and Wium-Anderson, S., 1971, The influence of Cu on photosynthesis and growth in diatoms, Physiol. Plant. 24 :480–484.

    Google Scholar 

  • Stewart, W. D. P., 1974, Algal Physiology and Biochemistry, Botanical Monographs Blackwell, Oxford.

    Google Scholar 

  • Stewart, W. D. P., 1977, A botanical ramble among the blue-green algae, Br. Phycol. J. 12 :89-115.

    Google Scholar 

  • Strom, K. M., 1933, Nutrition of algae. Experiments upon: the feasibility of the Schreiber method in fresh waters; the relative importance of iron and manganese in the nutritive medium; the nutritive substance given off by lake bottom muds, Arch. Hydrobiol. 25 :38-47.

    CAS  Google Scholar 

  • Stumm, W., and Morgan, J. J., 1970, Aquatic Chemistry Wiley-Interscience, New York.

    Google Scholar 

  • Sunda, W. G., and Hanson, P. J., 1978, Chemical speciation of copper in river waters, in: Chemical Modelling in Aqueous Systems (Everett A. Jenne, ed.), pp. 147–180, ACS Symposium No. 93., Miami, Fla.

    Google Scholar 

  • TaIling, J. F., 1961, Photosynthesis under natural conditions, Ann. Rev. Plant Physiol. 12 :133-154.

    Google Scholar 

  • Thayer, G. W., 1974, Identity and regulation of nutrients limiting phytoplankton production in the shallow estuaries near Beaufort, N.C., Oecologia 14 :75–92.

    Google Scholar 

  • Thomas, E. A., 1973, Phosphorus and eutrophication, in: Environmental Phosphorus Handbook (E. J. Griffith, A. Beeton, J. M. Spencer, and D. T. Mitchell, eds.), pp. 585–611, John Wiley & Sons, New York.

    Google Scholar 

  • Thurlow, D. L., Davis, R. B., and Sassevilk, D. R., 1975, Primary productivity, phytoplankton populations and nutrient bioassays in China Lake, Maine, U.S.A., Verh. Int. Verein. Limnolo 19 :1029–1036.

    Google Scholar 

  • Tilman, D., and Kilham, S. S., 1976, Phosphate and silicate growth and uptake kinetics of the diatoms Asterionella formosa and Cyclotella meneghiniana in batch and semicontinuous culture, J. Phycol. 12 :375–383.

    CAS  Google Scholar 

  • Tilman, D., Mattson, M., and Langer, S., 1981, Competition and nutrient kinetics along a temperature gradient: an experimental test of the mechanistic approach to niche theory, Limnolo Oceanogr. (in press).

    Google Scholar 

  • Tilzer, M. M., 1973, Diurnal periodicity in the phytoplankton assemblage of a high mountain lake, Limnol. Oceanogr. 18 :15–30.

    Google Scholar 

  • Tilzer, M. M., Goldman, C. R., and De Amezaga, E., 1975, The efficiency of photosynthetic light energy utilization by lake phytoplankton, Verh. Int. Verein. Limnol. 19 :800–807.

    Google Scholar 

  • Tilzer, M. M., Paerl, H. W., and Goldman, C. R., 1977, Sustained viability of aphotic phytoplankton in Lake Tahoe (California-Navada), Limnol. Oceanogr. 27 :84–91.

    Google Scholar 

  • Toerien, D. F., and Steyn, D. J., 1975, The eutrophication levels of four South African impoundments, Verh. Int. Verein. Limnol. 19 :1947–1956.

    Google Scholar 

  • Tsusue, A., and Holland, H. D., 1966, The coprecipitation of cations with CaCO3• 3, Geochim. Cosmochim. Acta. 30 :439–453.

    CAS  Google Scholar 

  • Vance, B. D., 1966, Sensitivity of Microcystis aeruginosa and other blue-green algae and associated bacteria to selected antibiotics, J. Phycol. 2: 125–128.

    CAS  Google Scholar 

  • Vollenweider, R. A., 1968, Water Management Research: Scientific Fundamentals of the Eutrophication of Lakes and FloWing Waters, with Particular Reference to Nitrogen and Phosphorus as Factors in Eutrophication Technical Report of the Organization for Economic Cooperation and Development, Paris, DAS/CSI/68.27.

    Google Scholar 

  • Vollenweider, R. A., and Nauwerck, A., 1961, Some observations on the C-14 method for measuring primary production, Verh. Int. Verein. Limnol. 14 :134–139.

    Google Scholar 

  • Walker, J. B., 1953, Inorganic micronutrient requirements of Chlorella. I. Requirements for calcium (or strontium), copper and molybdenum, Arch. Biochem. Biophys. 46 :1–11.

    CAS  PubMed  Google Scholar 

  • Walsby, A. E., 1975, Gas vescic1es, Ann. Rev. Plant Physiol. 36 :427–439.

    Google Scholar 

  • Weibe, W. J., and Pomeroy, L. R., 1972, Microorganisms and their association with aggregates and detritus in the sea: a microscopic study, in: Detritus and its Role in Aquatic Ecosystems (U. Santollini and J. W. Hopton, Eds.), pp. 325–352. Mem. 1st. Ital. Idrobiol. 29 Suppl., Pallanza, Italy.

    Google Scholar 

  • Weiler, R. R., 1975, Carbon dioxide exchange and productivity in Lake Erie and Lake Ontario, Verh. Int. Verein. Limnol. 19 :694–704.

    Google Scholar 

  • Weiss, C. M., and Helms, R. W., 1971, The Interlaboratory Precision Test. An Eight Laboratory Evaluation of the Provisional Algal Assay Procedure Bottle Test, E. P. A. Report.

    Google Scholar 

  • Wetzel, R. G., 1964, A comparative study of the primary productivity of higher aquatic plants, periphyton, and phytoplankton in a large, shallow lake, Int. Rev. Ges. Hydrobiol. 49 :1–61.

    Google Scholar 

  • Wetzel, R. G., 1975, Limnology W. B. Saunders, Philadelphia.

    Google Scholar 

  • Wetzel, R. G., 1981, Longterm dissolved and particulate alkaline phosphatase activity in a hardwater lake in relation to lake stability and phosphorus enrichments, Verh. Int. Verein. Limnolo 21 :337–349.

    Google Scholar 

  • White, E., Payne, G., Pickmere, S., and Pick, F., 1982, The relative importance of nitrogen and phosphorus in eutrophication of Canadian and New Zealand lakes, Can. J. Fish. Aquat. Sci. (in press).

    Google Scholar 

  • Whitton, B. A. (ed.), 1975, River Ecology Blackwell, Oxford.

    Google Scholar 

  • Williams, N. J. 1974, Zooplankton transport of nutrients into the epilimnion of Castle Lake, California, Ph.D. thesis, Univ. of California, Davis.

    Google Scholar 

  • Williams, R. B., 1972, Nutrient levels and phytoplankton productivity in the estuary, in: Proceedings of the Coastal Marsh and Estuary Management Symposium (R. H. Chabreck, ed.), Louisiana State Univ. Div. of Contino Education, Baton Rouge, La.

    Google Scholar 

  • Wuhrmann, K., and Eichenberger, E., 1975, Experiments on the effects of inorganic enrichment of rivers on periphyton primary productivity, Verh. Int. Verein Limnol. 19 :2028–2034.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Paerl, H.W. (1982). Factors Limiting Productivity of Freshwater Ecosystems. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8318-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8318-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8320-2

  • Online ISBN: 978-1-4615-8318-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics