Skip to main content

Effects of Environmental Factors and Their Interactions on Phytoplankton Growth

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 6))

Abstract

The abundance and distribution of phytoplankton in the natural environment are regulated by various environmental factors, such as nutrient, light, and temperature. The effect, or stress, of each factor changes with time and space, and the relative importance of each factor also varies. Sometimes it is not difficult to identify the key factor controlling primary productivity, but quite frequently, it takes laborious efforts to discern the responsible environmental stress. This difficulty is due in good measure to the simultaneous action of more than one stress and is compounded by our general lack of understanding of the way one factor interplays with others in controlling growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaronson, S., 1973, Effect of incubation temperature on the macromolecular and lipid content of the phytoflagellate Ochromonas danica, J. Phycol. 9:111–113.

    CAS  Google Scholar 

  • Ahlgren, G., 1977, Growth of Oscillatoria agardhii Gom. in chemostat culture. I. Investigations of nitrogen and phosphorus requirements, Oikos 29:209–224.

    CAS  Google Scholar 

  • Ahlgren, G., 1978, Growth of Oscillatoria agardhii in chemostat culture. 2. Dependence of growth constants on temperature, Mitt. Int. Verein. Limnol. 21:88–102.

    CAS  Google Scholar 

  • Ameluxen, R. E., and Murdock, A. L., 1978, Microbial life at high temperatures: mechanisms and molecular aspects, in: Microbial Life in Extreme Environments (D. J. Kushner, ed.), pp. 217–278, Academic Press, New York.

    Google Scholar 

  • Anderson, S. M., and Roel, O. A., 1981, Effects of light intensity in nitrate and nitrite uptake and excretion by Chaetoceros curvisetus, Mar. Biol. 62:257–261.

    CAS  Google Scholar 

  • Aruga, Y., 1965, Ecological studies of photosynthesis and matter production of phytoplankton. II. Photosynthesis of algae in relation to light intensity and temperature, Bot. Mag. Tokyo 78:360–365.

    CAS  Google Scholar 

  • Baross, J. A., and Morita, R. Y., 1978, Microbial life at low temperatures: ecological aspects, in: Microbial Life in Extreme Environments (D. J. Kushner, ed.), pp. 9–72, Academic Press, New York.

    Google Scholar 

  • Beardall, J., and Morris, I., 1976, The concept of light intensity adaptation in marine phytoplankton: some experiments with Phaeodactylum tricornutum. Mar. Biol. 37:377–387.

    Google Scholar 

  • Beardall, J., Mukerji, D., Glover, H. E., and Morris, I., 1976, The path of carbon in photosynthesis by marine phytoplankton, J. Phycol. 12:409–417.

    CAS  Google Scholar 

  • Belay, A, and Fogg, G. E., 1978, Photoinhibition of photosynthesis in Asterionella formosa, J. Phycol. 14:341–347.

    CAS  Google Scholar 

  • Berman, T., 1976, Release of dissolved organic matter by photosynthesizing algae in Lake Kinneret, Israel, Freshwater Biol. 6: 13–18.

    CAS  Google Scholar 

  • Berman, T., and Holm-Hansen, O., 1974, Release of photoassimilated carbon as dissolved organic matter by marine phytoplankton, Mar. Biol. 28:305–310.

    CAS  Google Scholar 

  • Bogorad, L., 1975, Phycobiliproteins and complementary chromatic adaptation, Annu. Rev. Plant. Physiol. 26:369–401.

    CAS  Google Scholar 

  • Brown, E. J., and Harris, R. F., 1978, Kinetics of algal transient phosphate uptake and the cell quota concept, Limnol. Oceanogr. 23:35–40.

    CAS  Google Scholar 

  • Brown, T. E., Richardson, F. L., and Vaughn, M. L., 1967, Development of red pigmentation in Chlorococcum winneri (Chlorophyta chlorococcales). Phycologia 6:167–184.

    CAS  Google Scholar 

  • Brown, T. J., and Geen, G. H., 1974, The effect of light quality on the carbon metabolism and extracellular release of Chlamydomonas reinhardtii Dangeard, J. Phycol. 10:213–220.

    CAS  Google Scholar 

  • Burmaster, D. E., 1979, The continuous culture of phytoplankton: mathematical equivalence among three steady-state models. Am. Nat. 113:123–134.

    Google Scholar 

  • Burmaster, D. E., and Chisholm, S. W., 1979, A comparison of two methods for measuring phosphate uptake by Monochrysis lutheri Droop grown in continuous culture, J. Exp. Mar. Biol. Ecol. 39:187–202.

    Google Scholar 

  • Caperon, J., 1968, Population growth response of lsochrysis galbana to variable nitrate environment, Ecology 49:866–872.

    Google Scholar 

  • Chan, A. T., 1978, Comparative physiological study of marine diatoms and dinoflagellates in relation to irradiance and cell size. I. Growth under continuous light, J. Phycol. 14:396–402.

    Google Scholar 

  • Chisholm, S. W., and Nobbs, P. A., 1976, Simulation of algal growth and competition in a phosphate- limited cyclostat, in: Modelling Biochemical Processes in Aquatic Ecosystems (R. P. Canale, ed.), pp. 337–355, Ann Arbor Press, Ann Arbor, Mich.

    Google Scholar 

  • Collins, C. D., 1980, Instantaneous and long-term effects of light intensity and temperature on the blue-green alga Anabaena variabilis Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, N.Y.

    Google Scholar 

  • Cunningham, A., and Maas, P., 1978, Time lag and nutrient storage effects in the transient growth response of Chlamydomonas reinhardtii in nitrogen-limited batch and continuous culture, J. Gen. Microbiol. 104:227–231.

    Google Scholar 

  • Davis, A. G., 1970, Iron, chelation and growth of marine phytoplankton. I. Growth kinetics and chlorophyll production in cultures of euryhaline flagellate Dunaliella tertiolecta under ironlimited conditions, J. Mar. Biol. Assoc. U.K. 50:65–86.

    Google Scholar 

  • D’Elia, C. F., Guillard, R. R. L., and Nelson, D. M., 1979, Growth and competition of the marine diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. I. Nutrient effects, Mar. Biol. 50:305–312.

    Google Scholar 

  • deMarsec, N. T., 1977, Occurrence and nature of chromatic adaptation in cyanobacteria, J. Bacteriol. 30:82–91.

    Google Scholar 

  • Ditoro, D. M., 1980, Applicability of cellular equilibrium and Monod theory to phytoplankton growth kinetics, Ecol. Model. 8:201–218.

    CAS  Google Scholar 

  • DöOkler, G., and Przbylla, K.-R., 1973, Einfluss der Termperatur auf die Lichtamung der Blaualge Anacystis nidulans, Planta 110:153–158.

    Google Scholar 

  • Dring, M. J., 1970, Photoperiodic effects in microorganisms, in: Photobiology of Microorganisms (P. Haldall, ed.), pp. 345–368, Wiley-Interscience, New York.

    Google Scholar 

  • Dring, M. J., 1981, Chromatic adaptation of photosynthesis in benthic marine algae: an examination of its ecological significance using a theoretical model, Limnol. Oceanogr. 26:271–284.

    Google Scholar 

  • Droop, M. R., 1968, Vito BI2 and marine ecology: IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri, J. Mar. Biol. Assoc. U.K. 48:689–733.

    CAS  Google Scholar 

  • Droop, M. R., 1974, The nutrient status of algal cells in batch culture, J. Mar. Biol. Assoc. U.K. 54:825–855.

    CAS  Google Scholar 

  • Droop, M. R., 1975, The nutrient status of algal cells in batch culture, J. Mar. Biol. Assoc. U.K. 55:541–555.

    CAS  Google Scholar 

  • Durbin, E. G., 1974, Studies on the autoecology of the marine diatom Thalassiosira nordenskioeldi Cleve I. The influence of day length, light intensity, and temperature on growth, J. Phycol. 10:220–225.

    Google Scholar 

  • Eppley, R. W., 1972, Temperature and phytoplankton growth in the sea. Fish. Bull. 70:1063–1085.

    Google Scholar 

  • Eppley, R. W., and Sloan, P. R., 1966, Growth rates of marine phytoplankton: correlation with light absorption by cell chlorophyll a. Physiol. Plant. 19:47–59.

    CAS  Google Scholar 

  • Eppley, R. W., Rogers, J. N., and McCarthy, J. J., 1969, Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton, Limnol. Oceanogr. 14:912–920.

    CAS  Google Scholar 

  • Falkowski, P. G., 1980, Light-shade adaptation in marine phytoplankton, in: Primary Productivity of the Sea (P. G. Falkowski, ed.), pp. 99–120, Plenum Press, New York.

    Google Scholar 

  • Falkowski, P. G., and Owen, T. G., 1978, Effects of light intensity on photosynthesis and dark respiration in six species of marine phytoplankton, Mar. Biol. 45:289–295.

    CAS  Google Scholar 

  • Falkowski, P. G., and Owen, T. G., 1980, Light-shade adaptation-two strategies in marine phytoplankton, Plant Physiol. 66:592–595.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Falkowski, P. G., and Stone, D. P., 1975, Nitrate uptake in marine phytoplankton: energy sources and the interaction with carbon fixation, Mar. Biol. 32:77–84.

    CAS  Google Scholar 

  • Finenko, Z. Z., and Kruptkia-Akinina, D. K., 1974, Effects of inorganic phosphorus on growth rate of diatoms, Mar. Biol. 26:193–201.

    CAS  Google Scholar 

  • Fuhs, G. W., 1969, Phosphorus content and rate of growth in the diatom eyclotella nana and Thalassiosira fiuviatilis, J. Phycol. 5:312–321.

    CAS  Google Scholar 

  • Fuhs, G. W., DemerIe, S. D., Canelli, E., and Chen, M., 1972, Characterization of phosphoruslimited algae, in: Nutrient and Eutrophication (G. E. Likens, ed.), Special Symposia, Vol. 1, pp. 113–132, The American Society for Limnology and Oceanography, Allen Press, Lawrence, Kan.

    Google Scholar 

  • Glover, H. E., and Morris, I., 1979, Photosynthetic carboxylating enzymes in marine phytoplankton, Limnol. Oceanogr. 24:510–519.

    CAS  Google Scholar 

  • Glover, H. E., Beardall, J., and Morris, I., 1975, Effects of environmental factors on photosynthesis patterns in Phaeodactylum tricornutum (Bacillariophyceae). I. Effect of nitrogen deficiency and light intensity, J. Phycol. 11:424–429.

    CAS  Google Scholar 

  • Goering, J. J., Nelson, D. M., and Carter, J. A., 1973, Silicic acid uptake by natural populations of marine phytoplankton, Deep-Sea Res. 20:777–789.

    CAS  Google Scholar 

  • Goldman, J. C., 1977, Temperature effects on phytoplankton growth in continuous culture, Limnol. Oceanogr. 22:932–936.

    Google Scholar 

  • Goldman, J. C., 1979, Temperature effects on steady-state growth, phosphorus uptake, and the chemical composition of a marine phytoplankter, Microb. Ecol. 5:153–166.

    CAS  PubMed  Google Scholar 

  • Goldman, J. C., 1980, Physiological processes, nutrient availability, and the concept of relative growth rate in marine phytoplankton ecology, in: Primary Productivity in the Sea (P. G. Falkowski, ed.), pp. 179–194, Plenum Press, New York.

    Google Scholar 

  • Goldman, J. C., and Carpenter, E. J., 1974, A kinetic approach to the effect of temperature on algal growth, Limnol. Oceanogr. 19:756–766.

    Google Scholar 

  • Goldman, J. C., and Graham, S. J., 1981, Inorganic carbon limitation and chemical composition of two freshwater green microalgae, Appl. Environ. Microbiol. 41:60–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldman, J. C., and McCarthy, J. J., 1978, Steady-state growth and ammonium uptake of a fast-growing marine diatom, Limnol. Oceanogr. 23:695–703.

    CAS  Google Scholar 

  • Gons, H. J., and Mur, L. R., 1975, An energy balance for algal populations in light-limiting conditions, Verh. Int. Verein. Limnol. 19:2729–2733.

    Google Scholar 

  • Gotham, I. J., 1977, Nutrient-limited cyclostat growth. A theoretical and physiological aspect, Ph.D. thesis, State University of New York, Albany, N.Y.

    Google Scholar 

  • Gotham, I. J., and Rhee, G. Y., 1981a, Comparative kinetic studies of phosphate-limited growth and phosphate uptake in phytoplankton in continuous culture, J. Phycol. 17:257–265.

    CAS  Google Scholar 

  • Gotham, I. J., and Rhee, G. Y., 1981b, Comparative kinetic studies of nitrate-limited growth and nitrate uptake in phytoplankton in continuous culture, J. Phyco. 17:309–314.

    CAS  Google Scholar 

  • Gotham, I. J., and Rhee, G. Y., 1982, The effects of phosphate and nitrate limitation on cyclostat growth of two freshwater diatoms, J. Gen. Microbiol. 128:199–205.

    CAS  Google Scholar 

  • Govindjee, and Braun, B. Z., 1974, Light absorption, emission, and photosynthesis, in: Algal Physiology and Biochemistry (W. D. P. Stewart, ed.), pp. 346–390, University of California Press, Berkeley.

    Google Scholar 

  • Govindjee, and Rabinowich, R. I., 1969, Photosynthesis John Wiley & Sons, New York.

    Google Scholar 

  • Govindjee, Papageorgiou, G., and Rabinowich, E., 1973, Chlorophyll fluorescence and photosynthesis, in: Practical Fluorescence (G. G. Guilbault, ed.), pp. 543–575, Marcel Dekker, New York.

    Google Scholar 

  • Grant, B. R., and Turner, I. M., 1969, Light stimulated nitrate and nitrite assimilation in several species of algae, Compo Biochem. Physiol. 29:995–1004.

    CAS  Google Scholar 

  • Guillard, R. R. L., Kilham, P., and Jackson, T. A., 1973, Kinetics of silicon-limited growth of marine diatom Thalassiosira pseudonana Hasle and Heimdal (Cyclotella nana Hustedt), J. Phycol. 9:233–237.

    CAS  Google Scholar 

  • Haldall, P., 1970, The photosynthetic apparatus of microalgae and its adaptation to environmental factors, in: Photobiology of Microorganisms (P. Haldall, ed.), pp. 1–16, WileyInterscience, New York.

    Google Scholar 

  • Hatch, M. D., 1976, Photosynthesis: the path of carbon, in: Plant Biochemistry (J. Bonner and J. E. Varner, eds.), pp. 797–845, Academic Press, New York.

    Google Scholar 

  • Healey, F. P., 1979, Short-term responses of nutrient-deficient algae to nutrient addition, J. Phycol. 15:289–299.

    CAS  Google Scholar 

  • Healey, F. P., 1980, Slope of the Monod equation as an indicator of advantage in nutrient competition, Microb. Ecol. 5:281–286.

    CAS  PubMed  Google Scholar 

  • Healey, F. P., 1981, Phosphate, in: Biology of Cyanobacteria (N. G. Carr and B. A. Whitton, eds.), in press. Blackwell Publications, Oxford.

    Google Scholar 

  • Healey, F. P., and Hendzel, L. L., 1975, Effects of phosphorus deficiency on two algae growing in chemostats, J. Phycol. 11:303–309.

    CAS  Google Scholar 

  • Hellebust, J. A., 1974, Extracellular products, in: Algal Physiology and Biochemistry (W. D. P. Stewart, ed.), pp. 838–863, University of California Press, Berkeley.

    Google Scholar 

  • Hobson, L. A., 1974, Effects of interactions of irradiance, day length, and temperature on division rates of three species of marine algae, J. Fish. Res. Bd. Can. 31:391–395.

    Google Scholar 

  • Holton, R. W., Blecker, H. H., and Stevens, T. S., 1968, Fatty acids in blue-green algae: possible relation to phylogenic position, Science 160:545–547.

    CAS  PubMed  Google Scholar 

  • Innis, W. E., and Ingraham, J. L., 1978, Microbial life at low temperatures: mechanisms and molecular aspects, in: Microbial Life in Extreme Environments (D. J. Kushner, ed.), pp. 73–104, Academic Press, New York.

    Google Scholar 

  • Jeffrey, S. W., 1980, Algal pigment systems, in: Primary Productivity in the Sea (P. G. Falkowski, ed.), pp. 33–58, Plenum Press, New York.

    Google Scholar 

  • Jones, K. J., Tett, P., Wallis, A. C., and Wood, B. J. N., 1978a, The use of small, continuous multispecies cultures to investigate the ecology of phytoplankton in a Scottish Sea loch, Mitt. Int. Verein. Limnol. 18:71–77.

    Google Scholar 

  • Jones, K. J., Tett, P., Wallis, A. C., and Wood, B. J. B., 1978b, Investigation of a nutrient-growth model using a continuous culture of natural phytoplanktonJ. Mar. Biol. Assoc. U.K. 58:923–941.

    CAS  Google Scholar 

  • Jones, L. W., and Myers, J., 1965, Pigment variations in Anacystis nidulans induced by light of selective wavelength, J. Phycol.1:7–14.

    CAS  Google Scholar 

  • Jones, L. W., and Galloway, R. A., 1979, Effect of light quality and intensity on glycerol content in Dunaliella tertiolecta (Chlorophyceae) and the relationship to cell growth/osmoregulation, J. Phycol. 15:101–106.

    Google Scholar 

  • Jørgensen, E. G., 1968, The adaptation of plankton algae. II. Aspects of the temperature adaptation of Skeletonema costatum, Physiol. Plant. 21:423–427.

    Google Scholar 

  • Jørgensen, E. G., 1969, The adaptation of plankton algae. IV. Light adaptation in different algal species, Physiol. Plant. 22:1307–1315.

    Google Scholar 

  • Jørgensen, E. G., 1970, The adaptation of plankton algae. V. Variation in photosynthetic characteristics of Skeletonema costatum cells grown at low intensity, Physiol Plant. 23:11–17.

    Google Scholar 

  • Keenan, J. D., and Auer, M. T., 1974, The influence of phosphorus luxury uptake on algal bioassays, J. Water Pollut. Cont. Fed. 46:532–542.

    CAS  Google Scholar 

  • Kiefer, D. A., 1973, Chlorophyll a fluorescence in marine centric diatoms: Responses of chloroplast to light and nutrient stress, Mar. Biol. 23:39–46.

    Google Scholar 

  • Kilham, S. S., 1975, Kinetics of silicon-limited growth in the freshwater diatom Asterionella formosa, J. Phycol. 11:396–399.

    CAS  Google Scholar 

  • Kohl, J.-G., and Nicklisch, A., 1981, Chromatic adaptation of the planktonic blue-green alga Oscillatoria redekei van Goor and its ecological significance, Int. Rev. Ges. Hydrobiol. 66:83–94.

    Google Scholar 

  • Kok, N., 1976, Photosynthesis: the path of energy, in: Plant Biochemistry (J. Bonner and J. E. Varner, eds.), pp. 846–886, Academic Press, New York.

    Google Scholar 

  • Konopka, A., and Shnur, M., 1980, Effect of light intensity on macromolecular synthethesis in cyanobacteria, Microbial Ecol. 6:291–301.

    CAS  Google Scholar 

  • Krogman, D. W., 1973, Photosynthetic reactions and components of thylakoids, in: The Biology of Blue-green Algae (N. G. Carr and N. A. Whitton, eds.), pp. 80–98, University of California Press, Berkeley.

    Google Scholar 

  • Kuenzler, E. J., and Ketchum, B. H., 1962, Rate of phosphorus uptake by Phaeodactylum tricornutum, Biol. Bull. 123:134–145.

    CAS  Google Scholar 

  • Lean, D. R. S., and Pick, F. R., 1981, Photosynthetic response of lake plankton to nutrient enrichment: a test for nutrient limitation, Limnol. Oceanogr. 26:1001–1019.

    CAS  Google Scholar 

  • Lederman, T. C., 1979, The effects of irradiance and phosphorus in batch cultures of Pavlova (Monocrysis) lutheri Ph.D. thesis, University of Sterling, Scotland.

    Google Scholar 

  • Li, W. K. W., 1980, Temperature adaptation in phytoplankton: cellular and photosynthetic characteristics, in: Primary Productivity in the Sea (P. G. Falkowski, ed.), pp. 259–280, Plenum Press, New York.

    Google Scholar 

  • Li, W. K. W., Glover, H. E., and Morris, I., 1980, Physiology of carbon photoassimilation by Oscillatoria thiebautii in the Caribbean Sea, Limnol. Oceanogr. 25:447–456.

    CAS  Google Scholar 

  • Lin, C. K., 1977, Accumulation of water soluble phosphorus and hydrolysis of polyphosphate by Cladophora glomerata (Chlorophyceae), J. Phycol. 13:46–51.

    CAS  Google Scholar 

  • Lin, C. K., and Schelske, C. L., 1979, Effects of nutrient enrichment, light intensity, and tem perature on growth of phytoplankton from Lake Huron, U.S. Environmental Protection Agency Report EPA-600/3–79-049 Environmental Research Laboratory, Duluth, Minn.

    Google Scholar 

  • Loogman, J. G., Post, A. F., and Mur, L. R., 1980, Influence of periodicity in light conditions, as determined by the trophic state of water, on the growth of the green alga Scenedesmus protuberans and the cyanobacterium Oscillatoria agardhii in: Hypertrophic Ecosystems (J. Barica and L. R. Mur, eds.), pp. 79–82, Dr. W. Junk bv. Publishers, The Hague.

    Google Scholar 

  • Lund, J. W. G., Mackereth, F. J. H., and Mortimer, C. H., 1963, Changes in depth and time of certain chemical and physical conditions and of the standing crop of Asterionella Formosa Hass. in the North Basin of Windermere in 1947, Phil. Trans. Roy. Soc. London Sci. B 246:255–290.

    Google Scholar 

  • MacIsaac, J. J., and Dugdale, R. C., 1969, The kinetics of nitrate and ammonia uptake by natural populations of marine phytoplankton, Deep-Sea Res. 16:45–57.

    CAS  Google Scholar 

  • Macisaac, J. J., and Dugdale, R. C., 1972, Interactions of light and inorganic nitrogen in controlling nitrogen uptake in the sea, Deep-Sea Res. 19:209–232.

    CAS  Google Scholar 

  • Maddux, W. S., and Jones, R. F., 1964, Some interactions of temperature, light intensity, and nutrient concentrations during the continuous culture of Nitzschia c10sterium and Tetraselmis sp., Limnol. Oceanogr. 9:79–86.

    Google Scholar 

  • Mague, T. H., Friberg, E., Hughes, D. J., and Morris, I., 1980, Extracellular release of carbon by marine phytoplankton: a physiological approach, Limnol. Oceanogr. 25:262–279.

    CAS  Google Scholar 

  • McCarthy, J. J., and Carpenter, E. J., 1979, Oscillatoria (Trichodesmium) thiebautii (Cyanophyta) in the central North Atlantic Ocean, J. Phycol. 15:75–82.

    CAS  Google Scholar 

  • Menzel, D. W., and Ryther, J. H., 1964, The composition of particulate organic matter in the western North Atlantic, Limnol. Oceanogr.9:179–186.

    CAS  Google Scholar 

  • Miller, J. D. H., and Fogg, G. E., 1957, Studies on the growth of Xanthophyceae in pure culture. I. The mineral nutrition of Monodus subterraneus Petersen, Arch. Mikrobiol. 28: 1–17.

    CAS  PubMed  Google Scholar 

  • Miyachi, S., Miyachi, S., and Kamiya, A., 1978, Wavelength effects on photosynthetic carbon metabolism in Chlorella, Plant Cell Physiol. 19:277–288.

    CAS  Google Scholar 

  • Monod, J., 1942, Recherches sur la Croissance des Cultures Bacteriennes (2nd ed.), Hermann, Paris.

    Google Scholar 

  • Morgan, K. C., and Kalff, J., 1979, Effects of light and temperature interactions on growth of Cryptomonos erosa (Crytophyceae), J. Phycol. 15:127–134.

    Google Scholar 

  • Morris, I., 1974, Nitrogen assimilation and protein synthesis, in: Algal Physiology and Biochemistry (W. D. P. Stewart, ed.), pp. 583–609. University of California Press, Berkeley.

    Google Scholar 

  • Morris, I., 1980, Path of carbon assimilation in marine phytoplankton, in: Primary Productivity of the Sea (P. G. Falkowski, ed.), pp. 139–160, Plenum Press, New York.

    Google Scholar 

  • Morris, I., and Glover, H. E., 1974, Questions on the mechanism of temperature adaptation in marine phytoplankton, Mar. Biol. 24:147–154.

    Google Scholar 

  • Morris, I., and Skea, W., 1978, Product of photosynthesis in natural populations of marine phytoplankton from the Gulf of Maine, Mar. Biol. 47:303–312.

    CAS  Google Scholar 

  • Mukerji, D., Glover, H. E., and Morris, I., 1978, Diversity in the mechanism of carbon dioxide fixation in Dunaliella tertiolecta (Chlorophyceae), J. Phycol. 14:137–142.

    CAS  Google Scholar 

  • Milller, H., 1972, Wachstum und Phosphat bedarf von Nitzschia actinostroides (Lemm.) v. Goor in statischer und homocontiunierlicher Kulter unter Phosphat-limiting, Arch. HydrioBiol. (Suppl.) 38:399–484.

    Google Scholar 

  • Mur, L. R., Gons, H. J., and Van Liere, L., 1978, Competition of the green alga Scenedesmus and the blue-green alga Oscillatoria, Mitt. Int. Verein. Limnol. 21:473–479.

    Google Scholar 

  • Myklestad, S., 1977, Production of carbohydrates by marine planktonic diatoms. II. Influence of the NIP ratio on the growth medium, on the assimilation ratio, growth rate, and production of cellular and extracellular carbohydrates by Chaetoceros affinis var. willei (Gram) Hustedt and Skeletonema costatum (Grev.), Cleve. J. Exp. Mar. Biol. Ecol. 29:161–179.

    CAS  Google Scholar 

  • Nalewajko, C., and Lean, D. R. S., 1978, Phosphorus kinetics-algal growth relationships in batch cultures, Mitt. Int. Verein. Limnol. 21:184–192.

    CAS  Google Scholar 

  • Nalewajko, C., and Martin, L., 1969, Extracellular production in relation to growth of four planktonic algae and of phytoplankton populations from Lake Ontario, Can. J. Bot. 47:405–413.

    Google Scholar 

  • Nelson, D. M., Goering, J. J., Kilham, S. S., and Guillard, R. R. L., 1976, Kinetics of silicic acid uptake and rates of silica dissolution in the marine diatom Thalassiosira pseudonana. J. Phycol. 12:246–252.

    CAS  Google Scholar 

  • Nelson, D. M., D’Elia, C. F., and Guillard, R. R. L., 1979, Growth and competition of the marine diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. II. Light limitation, Mar. Biol. 50:313–318.

    Google Scholar 

  • Nyholm, N., 1977, Kinetics of phosphate limited algal growth, Biotechnol. Bioeng. 19:467–492.

    CAS  PubMed  Google Scholar 

  • Oquist, G., 1974, Iron deficiency in the blue-green alga Anacystis nidulans: changes in pigmentation and photosynthesis, Physiol. Plant. 30:30–37.

    CAS  Google Scholar 

  • Ostroff, C. R., Karlander, E. P., and Van Valkenberg, S. D., 1980, Growth rates of Pseudopendinella pyriformis (Chrysophyceae) in response to 75 combinations of light, temperature, and salinity, J. Phycol. 16:421–423.

    CAS  Google Scholar 

  • Paasche, E., 1973a, Silicon and the ecology of marine plankton diatoms. I. Thalassiosira pseudonana (eyclotella nana) grown in a chemostat with silicate and limiting nutrient, Mar. Biol. 19:117–126.

    CAS  Google Scholar 

  • Paasche, E., 1973b, Silicon and the ecology of marine plankton diatoms. II. Silicate-uptake kinetics in five diatom species, Mar. Biol. 19:262–269.

    CAS  Google Scholar 

  • Paasche, E., 1975, Growth of the plankton diatom Thalassiosira nordenskioeldii Cleve at low silicate concentrations, J. Exp. Mar. Biol. Ecol. 18:173–183.

    CAS  Google Scholar 

  • Paasche, E., 1980, Silicon content of five marine plankton diatom species measured with a rapid filter method, Limnol. Oceanogr. 25:474–480.

    CAS  Google Scholar 

  • Papageorgiou, G., 1975, Chlorophyll fluorescence: an intrinsic probe of photosynthesis, in: Bioenergetics of Photosynthesis (Govindjee, ed.), pp. 319–371, Academic Press, New York.

    Google Scholar 

  • Parrott, L. M., and Slater, J. H., 1980, The DNA, RNA and protein composition of the Cyanobacterium Anacystis nidulans growth in light and carbon dioxide-limited chemos tats, Arch. Microbiol. 127:53–58.

    CAS  PubMed  Google Scholar 

  • Parsons, T. R., Takahashi, M., and Hargrave, B., 1978, Biological Oceanographic Processes (2nd ed.), Pergamon Press, Elmsford, N.Y.

    Google Scholar 

  • Perry, M. J., 1976, Phosphate utilization by an oceanic diatom in phosphorus-limited chemostat culture and in the oligotrophic waters of the central North Pacific, Limnol. Oceanogr. 21:88–107.

    CAS  Google Scholar 

  • Perry, M. J., Talbot, M. C., and Albert, R. S., 1981, Photoadaptation in marine phytoplankton: Responses of the photosynthetic unit, Mar. Biol. 62:91–101.

    CAS  Google Scholar 

  • Picket, J. M., 1975, Growth of Chlorella in nitrate-limited chemostat, Plant Physiol. 55:223–225.

    Google Scholar 

  • Plowman, K. M., 1972, Enzyme Kinetics. McGraw-Hill, New York.

    Google Scholar 

  • Prezelin, B. B., 1976, The role of peridinin-chlorophyll a-protein in photosynthetic light adaptation of the marine dinoflagellate, Glenodinium sp., Planta 130:225–233.

    CAS  Google Scholar 

  • Prezelin, B. B., and Matlick, H. A., 1980, Time-course of photoadaptation in the photosynthesisirradiance relationship of a dinoflagellate exhibiting photosynthetic periodicity, Mar. Biol. 58:85–96.

    CAS  Google Scholar 

  • Prezelin, B. B., and Sweeney, B. M., 1978, Photoadaptation of photosynthesis in Gonyaulax polyedra. Mar. Biol. 48:27–35.

    CAS  Google Scholar 

  • Prezelin, B. B., Ley, A. C., and Haxo, F. T., 1976, Effects of growth irradiance on photosynthetic action spectra of the marine dinoflagellate, Glenodinium sp., Planta 130:251–256.

    CAS  Google Scholar 

  • Provasoli, L., 1958, Nutrition and ecology of protozoa and algae, Annu. Rev. Microbiol. 12:279–308.

    CAS  PubMed  Google Scholar 

  • Raven, J. A., 1974, Carbon dioxide fixation, in: Algal Physiology and Biochemistry (W. D. P. Stewart, ed.), pp. 434–455, University of California Press, Berkeley.

    Google Scholar 

  • Redfield, A. C., 1958, The biological control of chemical factors in the environment, Am. Sci. 46:205–221.

    CAS  Google Scholar 

  • Reshkin, S. J., and Knauer, G. A., 1979, Light stimulation of phosphate uptake in natural assemblages of phytoplankton, Limnol. Oceanogr. 24: 1121–1124.

    Google Scholar 

  • Reynolds, J. H., Middlebrook, E. J., Porcella, D. B., and Grenney, W. J., 1975, Effects of temperature on growth constants of Selenastrum capricornutum. J. Water Pollut. Cont. Fed. 47:2420–2436.

    Google Scholar 

  • Rhee, G-Y., 1972, Competition between an alga and an aquatic bacterium for phosphate, Limnol. Oceanogr. 17:505–514.

    CAS  Google Scholar 

  • Rhee, G-Y., 1973, A continuous culture study of phosphate uptake, growth rate and polyphosphate in Scenedesmus sp., J. Phycol. 9:495–506.

    CAS  Google Scholar 

  • Rhee, G-Y., 1974, Phosphate uptake under nitrate limitation by Scenedesmus sp. and its ecological implications, J. Phycol. 10:470–475.

    CAS  Google Scholar 

  • Rhee, G-Y., 1978, Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition and nitrate uptake, Limnol. Oceanogr. 23:10–25.

    CAS  Google Scholar 

  • Rhee, G-Y., 1980, Continuous culture in phytoplankton ecology, in: Advances in Aquatic Microbiology. Vol. 2 (M. R. Droop and H. W. Jannasch, eds.), pp. 151–203, Academic Press, New York.

    Google Scholar 

  • Rhee, G-Y., and Gotham, I. J., 1980, Optimum N:P ratios and coexistence in planktonic algae, J. Phycol. 16:486–489.

    CAS  Google Scholar 

  • Rhee, G-Y., and Gotham, I. J., 1981a, The effects of environmental factors on phytoplankton growth: light and the interactions of light with nitrate limitation, Limnol. Oceanogr. 26:649–659.

    CAS  Google Scholar 

  • Rhee, G-Y., and Gotham, I. J., 1981b, The effect of environmental factors on phytoplankton growth: temperature and the interactions of temperature with nutrient limitation, Limnol. Oceanogr. 26:635–648.

    CAS  Google Scholar 

  • Rhee, G-Y., Gotham, I. J., and Chisholm, S. W., 1981, Use of cyclostat cultures to study phytoplankton ecology, in: Continuous Culture of Cells. Vol. 2 (P. C. Calcott, ed.), pp. 159–186, CRC Press, Cleveland.

    Google Scholar 

  • Rigby, L. H., Craig, S. R., and Budd, K., 1980, Phosphate uptake by Synechococcus leopoliensis (Cyanophyceae): enhancement by calcium ion, J. Phycol. 16:389–393.

    CAS  Google Scholar 

  • Rodhe, W., 1978, Algae in culture and nature, Mitt. Int. Verein. Limnol. 21:7–20.

    CAS  Google Scholar 

  • Ruyters, G., 1980, Blue light-enhanced phosphoenolpyruvate carboxylase activity in a chlorophyll free Chlorella mutant, Z. Pjlanzenphysiol. 100:107–112.

    CAS  Google Scholar 

  • Ryther, J., and Dunstan, W. M., 1971, Nitrogen, phosphorus, and eutrophication in the coastal marine environment, Science 171:1008–1013.

    CAS  PubMed  Google Scholar 

  • Sakshaug, E., 1978, The influence of environmental factors on the chemical composition of cultivated and natural populations of marine phytoplankton, Ph.D. thesis, University of Trondheim, Norway.

    Google Scholar 

  • Sakshaug, E., and Holm-Hansen, N., 1977, Chemical composition of Skeletonema costatum (Grev.) Cleve and Pavlova (Monochyrsis) lutheri (Droop) Green as a function of nitrate-, phosphate-, and iron-limited growth, J. Exp. Mar. Biol. Ecol. 29:1–34.

    CAS  Google Scholar 

  • Schindler, D. W., 1977, Evolution of phosphorus limitation in lakes, Science 195:260–262.

    CAS  PubMed  Google Scholar 

  • Senft, W. H., 1978, Dependence of light-saturated rates of algal photosynthesis on intracellular concentrations of phosphorus, Limnol. Oceanogr. 23:709–718.

    CAS  Google Scholar 

  • Senger, H., and Fleischhacker, Ph., 1978a, Adaptation of the photosynthetic apparatus of Sce nedesmus obliquus to strong and weak light conditions. I. Differences in pigments, photosynthetic capacity, quantum yield and dark reactions, Physiol. Plant. 43:35–42.

    CAS  Google Scholar 

  • Senger, H., and Fleischhacker, Ph., 1978b, Adaptation of the photosynthetic apparatus of Seenedesmus obliquus to strong and weak light conditions. II. Differences in photochemical reactions, the photosynthetic electron transport and photosynthetic units, Physiol. Plant. 43:43–51.

    Google Scholar 

  • Shaw, M. K., 1967, Effects of abrupt temperature shift on the growth of mesophilic and psychrophilic yeasts, J. Bacteriol. 93:1332–1336.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shelef, G., Oswald, W. J., and Golenke, C. C., 1970, Assaying algal growth with respect to nitrate concentration by a continuous flow turbidostat, in: Proceedings of 5th International Conference on Water Pollution Research (So H. Jenkins, ed.), pp. III25/1-III25/9, Pergamon Press, Oxford.

    Google Scholar 

  • Sherman, L. A., 1978, Differences in photosynthesis-associated properties of the blue-green alga Synechococcus cedrorum grown at 30 and 40 C, J. Phycol. 14:427–433.

    CAS  Google Scholar 

  • Skoglund, L., and Jensen, A., 1976, Studies of N-Iimited growth in dialysis culture, J. Exp. Mar. Biol. Beol. 21:169–178.

    CAS  Google Scholar 

  • Smayda, T. J., 1969, Experimental observations on the influence of temperature, light, and salinity on cell division of the marine diatom, Detonula confervacea (Cleve) Gran., J. Phycol. 5:150–157.

    Google Scholar 

  • Smayda, T. J., 1974, Bioassay of the growth potential of the surface water of lower Narragansett Bay over an annual cycle using the diatom Thalassiosira pseudonana (oceanic clone, 13–1) Limnol.Oceanogr. 19:889–901.

    Google Scholar 

  • Smith, R. C., 1968, The optical characterization of natural waters by means of an extinction coefficient, Limnol. Oceanogr. 13:425–429.

    Google Scholar 

  • Soeder, C. J., and Stengel, E., 1974, Physico-chemical factors affecting metabolism and growth rate, in: Algal Physiology and Biochemistry (W. D. P. Stewart, ed.), pp. 714–740, University of California Press, Berkeley.

    Google Scholar 

  • Sorokin, C., 1960, Kinetic studies of temperature effects on the cellular level, Biochim. Biophys. Acta 38:197–204.

    CAS  PubMed  Google Scholar 

  • Stanier, R. Y., Kunisawa, R., Mandel, M., and Cohen-Bazier, G., 1971, Purification and properties of unicellular blue-green algae (Order Chroococcales), Bacteriol. Rev. 35: 171–205.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steeman-Nielsen, E., 1978, Growth of plankton algae as a function of N-concentration, measured by means of a batch technique, Mar. Biol. 46:185–189.

    Google Scholar 

  • Steeman-Nielsen, E., and Jørgensen, E. G., 1968a, The adaptation of plankton algae. I. General part, Physiol. Plant. 21:401–413.

    Google Scholar 

  • Steeman-Nielsen, E., and Jørgensen, E. G., 1968b, The adaptation of plankton algae. III. With special consideration of importance in nature, Physiol. Plant. 21:647–654.

    Google Scholar 

  • Swift, D. G., and Taylor, W. R., 1974, Growth of vitamin BI2’limited cultures: Thalassiosira pseudonana. Monochrysis lutheri and Isochrysis galbana. J. Physiol. 10:385–391.

    CAS  Google Scholar 

  • Swift, E., and Meunier, V., 1976, Effects of light intensity on division rates, stimulable bioluminescence and cell size of the oceanic dinoflagellates Dissodinium lunula. Pyrocystis fusiformis and P. noctiluca. J. Phycol. 12:14–22.

    Google Scholar 

  • Syrett, P. J., 1962, Nitrogen assimilation, in: Physiology and Biochemistry of Algae (R. A. Lewin, ed.), Academic Press, New York.

    Google Scholar 

  • Takahashi, M., Fujii, K., and Parsons, T. R., 1973, Simulation study of phytoplankton photosynthesis and growth in the Frazer River estuary, Mar. Biol. 19:102–116.

    Google Scholar 

  • Tailing, J. F., 1961, Photosynthesis under natural conditions, Annu. Rev. Plant Physiol. 12:133–154.

    CAS  Google Scholar 

  • Tailing, J. F., 1979, Factor interactions for the prediction of lake metabolism, Arch. Hydrobiol. Beih. Ergebn. Limnol. 13:96–109.

    Google Scholar 

  • Tamiya, H., Sasa, T., Nihei, T., and Ishibashi, S., 1955, Effects of variation in daylength, day and night temperatures, and intensity of daylight upon the growth of Chlorella. J. Gen. Appl. Microbiol. 4:298–307.

    Google Scholar 

  • Tansey, M. R., and Brock, T. D., 1978, Microbial life at high temperatures: ecological aspects, in: Microbial Life in Extreme Environments (D. J. Kushner, ed.), pp. 159–216, Academic Press, New York.

    Google Scholar 

  • Terlizzi, D. E., and Karianda, E. P., 1980, Growth of a coccoid nanoplankter (Eustigmatophyceae) from the Chesapeake Bay as influenced by light, temperature, salinity, and nitrogen source in factorial combination, J. Phycol. 16:364–368.

    CAS  Google Scholar 

  • Terborgh, J., and Thiman, K. V., 1964, Interaction between daylength and intensity in growth and chlorophyll content of Acetabularia crenulata. Planta 63:83–98.

    CAS  Google Scholar 

  • Thomas, E. A., 1969, The process of eutrophication in central European lakes, in: Eutrophication: Causes. Consequences. Correctives. pp. 29–49, Natl. Acad. Sci./NatI. Res. Council, Publ. 1700.

    Google Scholar 

  • Thomas, R. J., Hipkin, C. R., and Syrett, P. J., 1976, The interaction of nitrogen assimilation with photosynthesis in nitrogen deficient cells of Chlorella. Planta. 133:9–13.

    CAS  PubMed  Google Scholar 

  • Thomas, W. H., and Dodson, A. N., 1972, On nitrogen deficiency in tropical Pacific Ocean phytoplankton. II. Photosynthetic and cellular characteristics of a chemostat-grown diatom, Limnol.Oceanogr. 17:515–523.

    CAS  Google Scholar 

  • Thomas, W. H., and Dodson, A. N., 1974, Effects of interactions between temperature and nitrate supply on the cell division rates of two marine phytoflagellates, Mar. Biol. 24:213–217.

    CAS  Google Scholar 

  • Tolbert, N. E., 1974, Photorespiration, in: Algal Physiology and Biochemistry (W. D. P. Stewart, ed.), pp. 474–504, University of California Press, Berkeley.

    Google Scholar 

  • Tomas, C. R., 1980, Olisthodiscus luteus (Chrysophyceae). IV. Effects of light intensity and temperature on photosynthesis, and cellular composition, J. Phycol. 16:149–156.

    CAS  Google Scholar 

  • Van Liere, L., 1979, On Oscillatoria agardhii Gomont: experimental ecology and physiology of nuisance bloom-forming cyanobacterium, Ph.D. thesis, University of Amsterdam, The Netherlands.

    Google Scholar 

  • Van Liere, L., and Mur, L. R., 1980, Occurrence of Oscillatoria agardhii and some related species, in: Hypertrophic Ecosystems (J. Barica and L. R. Mur, eds.), pp. 67–77, Dr. W. Junk bv. Publishers, The Hague.

    Google Scholar 

  • Vincent, W. F., 1979, Mechanisms of rapid photosynthetic adaptation in natural phytoplankton communities. I. Redistribution of excitation energy between photosystems I and II, J. Phycol. 15:429–434.

    CAS  Google Scholar 

  • Vincent, W. F., 1980, Mechanisms of rapid photosynthetic adaptation in natural phytoplankton communities. II. Changes in photochemical capacity as measured by DCMU-induced chlorophyll fluorescence, J. Phycol. 16:568–577.

    CAS  Google Scholar 

  • Vincent, W. F., 1981, Photosynthetic capacity measured by DCMU-induced chlorophyll fluorescence in an oligotrophic lake, Freshwater Biol. 11:61–78.

    Google Scholar 

  • Wallen, D. G., and Geen, G. H., 1971, Light quality in relation to growth, photosynthetic rates, and carbon metabolism in two species of marine plankton algae, Mar. Biol. 10:34–43.

    CAS  Google Scholar 

  • Whitaker, T. M., and Richardson, M. G., 1980, Morphology and chemical composition of a natural population of an ice-associated Antarctic diatom Navicula glaciei. J. Phycol. 16:250–257.

    CAS  Google Scholar 

  • Wynne, D., and Berman, T., 1980, Hot water extractable phosphorus-an indicator of nutritional status of Peridinium cinctum (Dinophyceae) from Lake Kenneret (Israel), J. Phycol. 16:40–46.

    Google Scholar 

  • Yentsch, C. S., and Lee, R. W., 1966, A study of photosynthetic light reactions, and a new interpretation of sun and shade phytoplankton, J. Mar. Sci. 24:319–337.

    Google Scholar 

  • Yoder, J. A., 1979, Effect of temperature on light-limited growth and chemical composition of Skeletonema costatum (Bacillariophycea), J. Phycol. 15:362–370.

    CAS  Google Scholar 

  • Young, T. C., and King, D. L., 1980, Interacting limits to algal growth: light, phosphorus, and carbon dioxide availability, Water Res. 14:409–412.

    CAS  Google Scholar 

  • Zevenboom, W., 1980, Growth and nutrient uptake kinetics of Oscillatoria agardhii, Ph.D. thesis, University of Amsterdam, The Netherlands.

    Google Scholar 

  • Zevenboom, W., and Mur, L. R., 1980, Nrfixing cyanobacteria: why they do not become dominant in Dutch, hypertrophic lakes, in: Hypertrophic Ecosystems (J. Darica and L. R. Mur, eds.), pp. 123–130, Dr. W. Junk bv. Publishers, The Hague.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Rhee, GY. (1982). Effects of Environmental Factors and Their Interactions on Phytoplankton Growth. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8318-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8318-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8320-2

  • Online ISBN: 978-1-4615-8318-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics