Skip to main content

Studies of Rate and Equilibrium Processes by Nuclear Magnetic Resonance Spectroscopy

  • Conference paper
Magnetic Resonance

Abstract

Every student of chemistry today is well aware of the immense power of nuclear magnetic resonance spectroscopy as a structural tool in both organic and inorganic chemistry. In addition, the technique is proving of considerable importance in studies of both rate and equilibrium processes. Among the latter processes, those involving conformational changes and equilibria are perhaps the most important, and in this paper we consider the special case of conformation and isomerism involving partial double bonds. One of the examples is provided by the enolate ion and we briefly consider how NMR can be used to investigate ion pair equilibria in such a system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H.S. Gutowsky, D.W. McCall and C.P. Slichter, J. Chem. Phys. 21, 279 (1953).

    Article  CAS  Google Scholar 

  2. A. Allerhand, H.S. Gutowsky, J. Jonas and R.A. Meinzer, J. Am. Chem. Soc. 88, 3185 (1966). This paper contains references to the various approximations which have been used, together with an excellent critical evaluation of each of them.

    Google Scholar 

  3. H.S. Gutowsky and C.H. Holm, J. Chem. Phys. 25, 1228 (1956).

    Article  CAS  Google Scholar 

  4. G. Fraenkel and C. Franconi, J. Am. Chem. Soc. 82, 4478 (1960).

    Article  CAS  Google Scholar 

  5. M.T. Rogers and J.C. Woodbrey, J. Phys. Chem. 66, 540 (1962).

    Article  CAS  Google Scholar 

  6. A.G. Whittaker and S. Siegel, J. Chem. Phys. 42, 3320 (1965).

    Article  CAS  Google Scholar 

  7. C.W. Fryer, F. Conti and C. Franconi, Ric. Sci. Rend. A8, 788 (1965).

    Google Scholar 

  8. F. Conti and W. von Phillipsborn, Heiv. Chim. Acta 50, 603 (1967).

    Article  CAS  Google Scholar 

  9. A. Mannschreck, Tetrahedron Letters 1341 (1965).

    Google Scholar 

  10. A. Mannschreck, A. Matthres and G. Rissmann, J. Mol. Spectry 23, 15 (1967).

    Article  CAS  Google Scholar 

  11. M. Rabinovitz and A. Pines, J. Am. Chem. Soc. 91, 1585 (1969).

    Article  CAS  Google Scholar 

  12. H.M. McConnell, J. Chem. Phys. 28, 430 (1958).

    Article  Google Scholar 

  13. C.S. Johnson Jr., in J.S. Waugh (ed.), Advances in Magnetic Resonance Vol. 1, Academic Press, N.Y., 1965, p. 33. In addition to the density-matrix treatment, this article is an excellent review of NMR methods for studying fast rate processes.

    Google Scholar 

  14. a) A. Allerhand and H.S. Gutowsky, J. Chem. Phys. 41, 2115 (1964);

    Article  Google Scholar 

  15. L.W. Reeves, in V. Gold (ed.), Advances in Physical Organic Chemistry Vol. 3, Academic Press, N.Y., 1965, p. 187.

    Google Scholar 

  16. R.A. Hoffman and S. Forsen, in J.W. Emsley, J. Feeney and L.H. Sutcliffe (eds.), Progress in Nuclear Magnetic Resonance Spectroscopy Vol. 1, Pergamon Press, Oxford, 1966, p. 15.

    Google Scholar 

  17. L.M. Jackman, T.E. Kavanagh and R.C. Haddon, Organic Magnetic Resonance 1, 109 (1969).

    Article  CAS  Google Scholar 

  18. R.C. Neuman Jr. and V. Jonas, J. Am. Chem. Soc. 90, 1970 (1968).

    Article  CAS  Google Scholar 

  19. A. Loewenstein, A. Malera, P. Rigny and W. Walters, J. Phys. Chem. 68, 1597 (1964);

    Article  CAS  Google Scholar 

  20. R.C. Neuman Jr. and L.B. Young, ibid. 69, 2570 (1965);

    CAS  Google Scholar 

  21. J. Sandstrom, ibid. 71, 2318 (1967);

    CAS  Google Scholar 

  22. R.C. Neuman Jr., D.N. Roark and V. Jonas, J. Am. Chem. Soc. 89, 3412 (1967);

    Article  CAS  Google Scholar 

  23. G. Schwenker and H. Rosswag, Tetrahedron Letters 43, 4237 (1967).

    Article  Google Scholar 

  24. L. Piette, J.D. Ray and R.A. Ogg, J. Chem. Phys. 26, 1341 (1957);

    Article  CAS  Google Scholar 

  25. W.D. Phillips, C.E. Looney and C.P. Spaeth, J. Mol. Spectry 1, 35 (1957);

    Article  CAS  Google Scholar 

  26. C.E. Looney, W.D. Phillips and E.L. Reilly, J. Am. Chem. Soc. 79, 6136 (1957);

    Article  CAS  Google Scholar 

  27. P. Gray and L.W. Reeves, J. Chem. Phys. 32, 1878 (1960);

    Article  CAS  Google Scholar 

  28. R.F. Grant, D.W. D.vidson and P. Gray, ibid. 33, 1713 (1960).

    Google Scholar 

  29. C.L. Bumgardner, K.S. McCallum and J.P. Freeman, J. Am. Chem. Soc. 83, 4417 (1961);

    Article  CAS  Google Scholar 

  30. S. Andreades, J. Org. Chem. 27, 4163 (1962).

    Article  CAS  Google Scholar 

  31. J. Ranft and S. Dahme, Heiv. Chim. Acta 47, 1160 (1964);

    Article  CAS  Google Scholar 

  32. R.C. Neuman, G.S. Hammond and T.J. Dougherty, J. Am. Chem. Soc. 84, 1506 (1962);

    Article  CAS  Google Scholar 

  33. G.S. Hammond and R.C. Neuman, J. Phys. Chem. 67, 1655 (1963);

    Article  CAS  Google Scholar 

  34. K.M. Wellman and D.L. Harris, Chem. Comm. 256(1967).

    Google Scholar 

  35. S. Trofimenko, J. Org. Chem. 28, 2755 (1963).

    Article  CAS  Google Scholar 

  36. F. Kaplan and G.K. Meloy, Tetrahedron Letters 2427 (1964).

    Google Scholar 

  37. W.N. Speckamp, U.K. Pandit and H.O. Huisman, Tetrahedron Letters 3279 (1964).

    Google Scholar 

  38. R.M. Moriarty, Tetrahedron Letters 509 (1964).

    Google Scholar 

  39. H.E.A. Kramer and R. Gompper, Tetrahedron Letters 969 (1963);

    Google Scholar 

  40. M. Martin and G. Martin, Compt. Rend. 256, 403 (1963);

    CAS  Google Scholar 

  41. H.E.A. Kramer and R. Gompper, Z. Physik. Chem. 43, 292 (1964).

    CAS  Google Scholar 

  42. T.M. Valego, J. Org. Chem. 31, 1150 (1960);

    Google Scholar 

  43. S. van der Werf, T. Olijnsma and J.B.F.N. Engberts, Tetrahedron Letters 689 (1967);

    Google Scholar 

  44. E. Lustig, W.R. Benson and N. Duy, J. Org. Chem. 32, 851 (1967).

    Article  CAS  Google Scholar 

  45. A.S. Kende, P.T. Izzo and W. Fulmor, Tetrahedron Letters 3697 (1966).

    Google Scholar 

  46. A.P. Downing, W.D. 011is and T.O. Sutherland, Chem. Comm. 143 (1967).

    Google Scholar 

  47. J.H. Crantree and D.J. Bertelli, J. Am. Chem. Soc. 89, 5384 (1967).

    Article  Google Scholar 

  48. G. Isaksson, J. Sandstron and I. Wennerbeck, Tetrahedron Letters 2233 (1967);

    Google Scholar 

  49. Y. Shvo, E.C. Taylor and J. Bartulin, ibid. 3259 (1967).

    Google Scholar 

  50. J.P. Brown and L.M. Jackman, unpublished results.

    Google Scholar 

  51. R.C. Haddon and L.M. Jackman, unpublished results.

    Google Scholar 

  52. J.B. Grutzner and L.M. Jackman, unpublished results.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Plenum Press, New York

About this paper

Cite this paper

Jackman, L.M. (1970). Studies of Rate and Equilibrium Processes by Nuclear Magnetic Resonance Spectroscopy. In: Coogan, C.K., Ham, N.S., Stuart, S.N., Pilbrow, J.R., Wilson, G.V.H. (eds) Magnetic Resonance. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7373-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7373-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7375-3

  • Online ISBN: 978-1-4615-7373-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics