Skip to main content

Abstract

We think of images as smoothly continuous, but we frequently handle them in small pieces. This chapter is about the consequences of dividing the image space into small boxes called pixels and assigning each a number—the pixel value or gray level. We do not display every x position, but rather divide the x axis into perhaps 1000 parts and choose our x locations from those. Similarly, we don’t display all the imaginable pixel values, but rather divide the intensity range into parts (gray levels) and choose our pixel values from those.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alpern, M. (1978) The Eyes and Vision, in Handbook of Optics, Driscoll, W. G. and Vaughan, W. eds., McGraw-Hill.

    Google Scholar 

  • Analog Devices (1986) Analog-Digital Conversion Handbook 3rd ed. Analog Devices, Inc. PO Box 796, Norwood, Mass 02062.

    Google Scholar 

  • Brown, R.G.W., Jones, R., Rarity, J.G. and Ridley, K.D. Characterization of silicon avalanche photodiodes for photon correlation measurements Appl Optics 25 4122–4126 (1986)

    Article  CAS  Google Scholar 

  • Brown, R.G.W., Jones, R., Rarity, J.G. and Ridley, K.D. Characterization of silicon avalanche photodiodes for photon correlation measurements Appi Optics 26 2383–2389 (1987).

    Article  CAS  Google Scholar 

  • Born, M. and Wolf, E. (1983) Principles of Optics, 6th ed. Pergamon Press.

    Google Scholar 

  • Castleman, K. R. (1979) Digital Image Processing, Prentice-Hall. Chapter 12 is a fine description of sampled data.

    Google Scholar 

  • Chen, V.H-K, and P.C. Cheng (1989) Real-time confocal imaging of STENTOR COERULEUS in epi-reflective mode by using a Tracor Northern Tandem Scanning Microscope Proc EMSA 47 138–139.

    Google Scholar 

  • Conrac Corporation (1985) Raster Graphics Handbook Van Nostrand Reinhold Co.

    Google Scholar 

  • Corle T.R., Chou C.-H. and Kino G.S. (1986) Depth response of confocal optical microscopes. Opt. Lett. 11, 770–772.

    Article  PubMed  CAS  Google Scholar 

  • Cornsweet, T. N. (1970) Visual Perception, Academic Press.

    Google Scholar 

  • Data Translation (1986) Applications Handbook Data Translation, Inc. 100 Locke Drive, Marlboro, Mass 01752–1192.

    Google Scholar 

  • Dorey, CK. and Ebenstein, D.B. (1988) Quantitative multispectral analysis of discrete subcellular particles by digital imaging fluorescence microscopy (DIFM). Visual Communications and Image Processing ’88 SPIE 1001, 282–288.

    Google Scholar 

  • Gates, S.C. (1989) Analog To Digital Converters in the Laboratory Scientific Computing and Automation 49–56. Gordon Publications, Morris Plains, NJ 07950–0650.

    Google Scholar 

  • Graham, C.H. (1965) Vision and Visual Perception John Wiley & Sons. Inoué, S. (1986) Video Microscopy Plenum Press. A fine general ref-erence on many of these topics.

    Google Scholar 

  • Inoué, S. (1981) Video image processing greatly enhances contrast… J Cell Biol 89 346–356.

    Article  PubMed  Google Scholar 

  • Jones, R.C. (1961) Information Capacity of Photographic Films, Jour Opt Soc Am 51 1159–1171.

    Article  CAS  Google Scholar 

  • Mize, R.R. (1985) The Microcomputer in Cell and Biology Research Elsevier.

    Google Scholar 

  • Morgan, J.S., Slater, D.C., Timothy, J.G. and Jenkins, E.B. (1989) Cen-troid position measurements and subpixel sensitivity variations with the MAMA detector Appl Optics 28, 1178–1192.

    Article  CAS  Google Scholar 

  • Oppenheim, A.V., Willsky, A.S. and Young, I.T. (1983) Signals and Systems, Prentice-Hall. Chapter 8 describes sampling theory very well.

    Google Scholar 

  • Pratt, W.K. (1978) Digital Image Processing John Wiley & Sons pg 309ff.

    Google Scholar 

  • RCA Electro-Optics Handbook EOH-11 RCA Solid State Div, Electro-Optics and Devices, Lancaster, PA (1974).

    Google Scholar 

  • RCA Photomultiplier Manual PT-61 RCA Electronics Components, Harrison, NJ (1970).

    Google Scholar 

  • Sheppard C.J.R. and Wilson T. (1978) Depth of field in the scanning microscope. Optics Letters 3, 115–117.

    Article  PubMed  CAS  Google Scholar 

  • Spomer, L A and Smith, M A L (1988) Image Analysis for Biological Research: Camera Influence of Measurement Accuracy Intelligent Instruments & Computers 6, 201–216

    Google Scholar 

  • Stone, J. M. (1963) Radiation and Optics, McGraw-Hill pg 182.

    Google Scholar 

  • Zimmerman, J.B. et. al. (1988) An Evaluation of the Effectiveness of Adaptive Histogram Equalization for Contrast Enhancement IEEE Trans Med Imaging 7 304–312.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Webb, R.H., Dorey, C.K. (1990). The Pixelated Image. In: Pawley, J.B. (eds) Handbook of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7133-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7133-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7135-3

  • Online ISBN: 978-1-4615-7133-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics