Skip to main content

Evolution on a Petri Dish

The Evolved β-Galactosidase System as a Model for Studying Acquisitive Evolution in the Laboratory

  • Chapter
Evolutionary Biology

Abstract

Several years ago I began a project whose major goal was to understand the variety of ways by which an organism can evolve new physiologic functions. How does an organism which is already well adapted to its environment evolve a new function to cope with an altered environment? The synthetic theory of evolution does not really address the problem of evolution of novel functions; nor does population genetics deal with the appearance of new functions. Although there is general agreement about how genes, having once acquired a particular function, are successively modified to improve the efficiency of that function, little is known about the detailed process by which functions evolve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, P. R., and Roth, J. R., 1977, Tandem genetic duplications in phage and bacteria, Annu. Rev. Microbiol. 31:473–505.

    PubMed  CAS  Google Scholar 

  • Arnheim, N., Sobel, J., and Canfield, R., 1971, Immunochemical resemblance between human leukemia and hen egg-white lysozyme and their reduced carboxymethyl derivatives, J. Mol. Biol. 61:237–250.

    PubMed  CAS  Google Scholar 

  • Arnon, R., and Maron, E., 1970, Lack of immunological cross-reaction between bovine a- lactalbumin and hen’s egg-white lysozyme, J. Mol. Biol. 51:703–707.

    PubMed  CAS  Google Scholar 

  • Arnon, R., and Maron, E., 1971, An immunological approach to the structural relationship between hen egg-white lysozyme and bovine a-lactalbumin, J. Mol. Biol. 61:225–235.

    PubMed  CAS  Google Scholar 

  • Arraj, J.A., and Campbell, J. H., 1975, Isolation and characterization of the newly evolved ebg ß-galactosidase of Escherichia coli K12, J. Bacteriol. 124:849–856.

    CAS  Google Scholar 

  • Bachmann, B., and Low, K. B., 1980, Linkage map of Escherichia coli K12, edition 6, Microbiol. Rev. 44:1–56.

    PubMed  CAS  Google Scholar 

  • Barkley, M. D., Riggs, A. D., Jobe, A., and Bourgeois, S., 1975, Interaction of effecting ligands with lac repressor and repressor-operator complex, Biochemistry 14:1700–1712.

    PubMed  CAS  Google Scholar 

  • Betz, J. L., and Clarke, P. H., 1972, Selective evolution of phenylacetamide-utilizing strains of Pseudomonas aeruginosa, J. Gen. Microbiol. 73:161–174.

    PubMed  CAS  Google Scholar 

  • Betz, J. L., and Clarke, P. H., 1973, Growth of Pseudomonas species on phenylacetamide, J. Gen. Microbiol. 75:167–177.

    PubMed  CAS  Google Scholar 

  • Bonner, D. M., Doss, J. A., and Mills, S. E., 1965, The evolution of an enzyme, in: Evolving Genes and Proteins (V. Bryson and H. J. Vogel, eds.), pp. 305–318, Academic Press, New York.

    Google Scholar 

  • Brammar, W. J., Clarke, P. H., and Skinner, A. J., 1967, Biochemical and genetic studies with regulator mutants of the Pseudomonas aeruginosa 8602 amidase system, J. Gen. Microbiol. 47:87–102.

    PubMed  CAS  Google Scholar 

  • Brew, K., Vanaman, T. C., and Hill, R. L., 1967, Comparison of the amino acid sequence of bovine a-lactalbumin and hen’s egg-white lysozyme, J. Biol. Chem. 242:3747–3749.

    PubMed  CAS  Google Scholar 

  • Brown, J. E., and Clarke, P. H., 1970, Mutations in a regulator gene allowing Pseudomonas aeruginosa 8602 to grow on butyramide, J. Gen. Microbiol. 64:329–342.

    PubMed  CAS  Google Scholar 

  • Brown, P. R., and Clarke, P. H., 1972, Amino acid substitution in an amidase produced by an acetanilide-utilizing mutant of Pseudomonas aeruginosa, J. Gen. Microbiol. 70:287–298.

    PubMed  CAS  Google Scholar 

  • Brown, J. E., Brown, P. R., and Clarke, P. H., 1969, Butyramide-utilizing mutants of Pseudomas aeruginosa 8602 which produce an amidase with altered substrate specificity, J. Gen. Microbiol. 57:273–298.

    PubMed  CAS  Google Scholar 

  • Bryson, V., and Vogel, H. J. (eds.), Evolving Genes and Proteins, Academic Press, New York.

    Google Scholar 

  • Burleigh, B. D., Rigby, P. W. J., and Hartley, B. S., 1974, A comparison of wild-type and mutant ribitol dehydrogenases from Klebsiella aerogenes, Biochem. J. 143:341–352.

    PubMed  CAS  Google Scholar 

  • Campbell, J. H., Lengyel, J., and Langridge, J., 1973, Evolution of a second gene for ß- galactosidase inEscherichia coli, Proc. Natl. Acad. Sci. USA 70:1841–1845.

    PubMed  CAS  Google Scholar 

  • Camyre, K. P., and Mortlock, R. P., 1965, Growth of Aerobacter aerogenes on d-arabinose and l-xylose, J. Bacteriol. 90:1157–1158.

    PubMed  CAS  Google Scholar 

  • Clarke, B., 1970, Selective constraints on amino-acid substitutions during the evolution of proteins, Nature 228:159–160.

    PubMed  CAS  Google Scholar 

  • Clarke, P. H., 1974, The evolution of enzymes for the utilisation of novel substrates, in: Evolution in the Microbial World (M. J. Carlile and J. J. Skehel, eds.), pp. 183–217, Cambridge University Press, London.

    Google Scholar 

  • Clarke, P. H., 1978, Experiments in microbial evolution, in: The Bacteria, Volume VI (L. N. Ornston and J. R. Sokatch, eds.), pp. 137–218, Academic Press, New York.

    Google Scholar 

  • Cocks, G. T., Aguilar, J., and Lin, E. C. C., 1974, Evolution of l-l,2-propanediol catabolism inEscherichia coli by recruitment of enzymes for l-fucose and l-lactate metabolism, J. Bacteriol. 118:83–88.

    PubMed  CAS  Google Scholar 

  • Demerec, M., Adelberg, E. A., Clark, A. J., and Hartman, P. E., 1966, A proposal for a uniform nomenclature in bacterial genetics, Genetics 54:61–76.

    PubMed  CAS  Google Scholar 

  • Dickerson, R. E., 1971, The structure of cytochrome C and the rates of molecular evolution, J. Mol Evol. 1:26–45.

    PubMed  CAS  Google Scholar 

  • Dixon, G. H., 1966, Mechanisms of protein evolution, in: Essays in Biochemistry, Volume 2 (P. N. Campbell and G. D. Greville, eds.), pp. 147–204, Academic Press, New York.

    Google Scholar 

  • Farin, F., and Clarke, P. H., 1978, Positive regulation of amidase synthesis in Pseudomonas aeruginosa, J. Bacteriol. 135:379–392.

    PubMed  CAS  Google Scholar 

  • Fitch, W. M., and Margoliash, E., 1970, The usefulness of amino acid and nucleotide sequences in evolutionary studies, Evol. Biol. 4:67–109.

    CAS  Google Scholar 

  • Francis, J. C., and Hansche, P. E., 1972, Directed evolution of metabolic pathways in microbial populations. I. Modification of the acid phosphatase optimum in S. cerevisiae, Genetics 70:59–73.

    CAS  Google Scholar 

  • Francis, J. C., and Hansche, P. E., 1973, Directed evolution of metabolic pathways in microbial populations. II. A repeatable adaptation in Saccharomyces cerevisiae, Genetics 74:259–265.

    CAS  Google Scholar 

  • Goodman, M., 1977, Protein sequences in phylogeny, in: Molecular Evolution (F. Ayala, ed.), pp. 141–159, Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Hacking, A. J., and Lin, E. C. C., 1977, Regulatory changes in the fucose system associated with the evolution of a catabolic pathway for propanediol in Escherichia coli, J. Bacteriol. 130:832–838.

    PubMed  CAS  Google Scholar 

  • Hacking, A. J., Aguilar, J., and Lin, E. C. C., 1978, Evolution of propanediol utilization in Escherichia coli: Mutant with improved substrate-scavenging power, J. Bacteriol. 136:522–530.

    PubMed  CAS  Google Scholar 

  • Hall, B. G., 1973, In vivo complementation between wild type and mutant ß-galactosidase in Escherichia coli, J. Bacteriol. 114:448–450.

    PubMed  CAS  Google Scholar 

  • Hall, B. G., 1976a, Experimental evolution of a new enzymatic function. Kinetic analysis of the ancestral (ebg°) and evolved (ebg+) enzymes, J. Mol. Biol. 107:71–84.

    PubMed  CAS  Google Scholar 

  • Hall, B. G., 1976b, Methylgalactosidase activity: An alternative evolutionary destination for the eb 0 gene, J. Bacteriol. 126:536–538.

    PubMed  CAS  Google Scholar 

  • Hall, B. G., 1977, Number of mutations required to evolve a new lactase function in Escherichia coli, J. Bacteriol. 129:540–543.

    PubMed  CAS  Google Scholar 

  • Hall, B. G., 1978a, Experimental evolution of a new enzymatic function. II. Evolution of multiple functions for EBG enzyme in E. coli, Genetics 89:453–465.

    PubMed  CAS  Google Scholar 

  • Hall, B. G., 1978b, Regulation of newly evolved enzymes. IV. Directed evolution of the ebg repressor, Genetics 90:673–691.

    PubMed  CAS  Google Scholar 

  • Hall, B. G., and Clarke, N. D., 1977, Regulation of newly evolved enzymes. III. Evolution of the ebg repressor during selection for enhanced lactase activity, Genetics 85:193–201.

    PubMed  CAS  Google Scholar 

  • Hall, B. G., and Hartl, D. L., 1974, Regulation of newly evolved enzymes. I. Selection of a novel lactase regulated by lactose in Escherichia coli, Genetics 76:391–400.

    PubMed  CAS  Google Scholar 

  • Hall, B. G., and Hartl, D. L., 1975, Regulation of newly evolved enzymes. II. The ebg repressor, Genetics 81:427–435.

    CAS  Google Scholar 

  • Hall, B. G., and Zuzel, T., 1980, Evolution of a new enzymatic function by recombination within a gene, Proc. Natl. Acad. Sci. USA 77:3529–3533.

    PubMed  CAS  Google Scholar 

  • Hall, B. G., Hartl, D. L., and Bulbulian, B., 1974, Two pathways for the evolution of a new p-galactosidase (ebg) in E. coli, Genetics 77:s28.

    Google Scholar 

  • Hansche, P. E., 1975, Gene duplication as a mechanism of genetic adaptation inSaccha- romyces cerevisiae, Genetics 79:661–674.

    PubMed  CAS  Google Scholar 

  • Hartl, D. L., and Dykhausen, D., 1979, Genetic map ofux-eb-to-me region in E. coli, Genetics 91:s44.

    Google Scholar 

  • Hartl, D. L., and Hall, B. G., 1974, Second naturally occurring p-galactosidase in E. coli, Nature 248:152–153.

    CAS  Google Scholar 

  • Hartley, B. S., Brown, J. R., Kauffman, D. L., and Smillie, L. B., 1965, Evolutionary similarities between pancreatic proteolytic enzymes, Nature 207:1157–1159.

    PubMed  CAS  Google Scholar 

  • Hartley, B. S., Burleigh, B. D., Midwinter, G. G., Moore, C. H., Morris, H. R., Rigby, P. W. J., Smith, M. J., and Taylor, S. S., 1972, Where do new enzymes come from?, in: Enzymes: Structure and Function, 8th FEBS Meeting, Volume 29 (J. Denreth, R. A. Oosterbaan, and C. Veeger, eds.), North-Holland, Amsterdam.

    Google Scholar 

  • Hartley, B. S., 1974, Enzyme families, in: Evolution in the Microbial World (M. J. Carlile, and J. J. Skehel, eds.), pp. 151–182, Cambridge University Press, London.

    Google Scholar 

  • Hegeman, G. D., and Rosenberg, S. L., 1970, The evolution of bacterial enzyme systems, Annu. Rev. Microbiol. 24:429–462.

    PubMed  CAS  Google Scholar 

  • Hill, R. L., Delaney, R., Fellows, R. E., and Lebovitz, H. E., 1966, The evolutionary origins of the immunoglobulins, Proc. Natl. Acad. Sci. USA 56:1762–1769.

    PubMed  CAS  Google Scholar 

  • Hinegardner, R., 1977, Evolution of genome size, in: Molecular Evolution (F. J. Ayala, ed.), pp. 179–199, Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Hobson, A. C., 1978, A mutation allowing utilization of lactose byEscherichia coli la mutants defective in lactose permease, Mol. Gen. Genet. 161:109–110.

    PubMed  CAS  Google Scholar 

  • Hopwood, D. A., 1967, Genetic analysis and genome structure in Streptomyces coelicolor, Bacteriol. Rev. 31:373–403.

    CAS  Google Scholar 

  • Horiuchi, T., Tomizawa, J., and Novick, A., 1962, Isolation and properties of bacteria capable of high rates of p-galactosidase synthesis, Biochim. Biophys. Acta 55:152.

    PubMed  CAS  Google Scholar 

  • Horiuchi, T., Horiuchi, S., and Novick, A., 1963, The genetic basis of hyper-synthesis of p-galactosidase, Genetics 48:157–169.

    PubMed  CAS  Google Scholar 

  • Inderlied, C. B., and Mortlock, R. P., 1977, Growth of Klebsiella aerogenes on xylitol: Implications for bacterial enzyme evolution, J. Mol. Evol. 9:181–190.

    PubMed  CAS  Google Scholar 

  • Jobe, A., and Bourgeois, S., 1972, Lac repressor-operator interaction. VI. The natural inducer of the lac operon, J. Mol. Biol. 69:397–408.

    PubMed  CAS  Google Scholar 

  • Johnson, E. M., Wohlhieter, J. A., Placek, B. P., Sleet, R. B., and Baron, L. S., 1976, Plasmid-determined ability of a Salmonella tennessee strain to ferment lactose and sucrose, J. Bacteriol. 125:385–386.

    PubMed  CAS  Google Scholar 

  • Kemper, J., 1974a, Gene order and co-transduction in the leu-ara-fol-py region of the Salmonella typhimurium linkage map, J. Bacteriol. 117:94–99.

    PubMed  CAS  Google Scholar 

  • Kemper, J., 1974b, Evolution of a new gene substituting for the le gene of Salmonella typhimurium: Origin and nature of su and ne mutations, J. Bacteriol. 120:1176–1185.

    PubMed  CAS  Google Scholar 

  • Kimura, M., 1968, Evolutionary rate at the molecular level, Nature 217:624–626.

    PubMed  CAS  Google Scholar 

  • Kimura, M., and Ohta, T., 1971, On the rate of molecular evolution, J. Mol. Evol. 1:1–17.

    PubMed  CAS  Google Scholar 

  • King, J. L., and Jukes, T. H., 1969, Non-Darwinian evolution, Science 164:788–798.

    PubMed  CAS  Google Scholar 

  • Learner, S. A., Wu, T. T., and Lin, E. C. C., 1964, Evolution of a catabolic pathway in bacteria, Science 146:1313–1315.

    Google Scholar 

  • Llanc, D. J., and Mortlock, R. P., 1971a, Metabolism of d-arabinose: Origin of a d- ribulokinase activity in Escherichia coli, J. Bacteriol. 106:82–89.

    Google Scholar 

  • Llanc, D. J., and Mortlock, R. P., 1971b, Metabolism of d-arabinose: A New pathway in Escherichia coli, J. Bacteriol. 106:90–96.

    Google Scholar 

  • Lederberg, J., 1951, Genetic studies with bacteria, in: Genetics in the Twentieth Century (L. C. Dunn, ed.), pp. 263–289, Macmillan, New York.

    Google Scholar 

  • Lewontin, R. C., 1974, The Genetic Basis of Evolutionary Change, Columbia University Press, New York.

    Google Scholar 

  • Lin, E. C. C., Hacking, A. J., and Aguilar, J., 1976, Experimental models of acquisitive evolution, Bioscience 26:548–555.

    Google Scholar 

  • Luria, S. E., and Delbrück, M., 1943, Mutations of bacteria from virus sensitivity to virus resistance, Genetics 28:491–511.

    PubMed  CAS  Google Scholar 

  • Mandel, M., 1969, New approaches to bacterial taxonomy: Perspective and prospects, Annu. Rev. Microbiol. 23:239–274.

    PubMed  CAS  Google Scholar 

  • Maughlin, P. J., and Dayhoff, M. O., 1973, Eukaryote evolution: A view based on cytochrome C sequence data, J. Mol. Evol. 2:99–116.

    Google Scholar 

  • Messer, A., 1974, Lactose permeation via the arabinose transport system in Escherichia coli K12, J. Bacteriol. 120:266–272.

    PubMed  CAS  Google Scholar 

  • Miller, J. H., 1972, Experiments in Molecular Genetics, p. 228, Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  • Mortlock, R. P., 1981, Regulatory mutations and the development of new metabolic pathways by bacteria, Evol. Biol. 14:205–267.

    Google Scholar 

  • Mortlock, R. P., and Wood, W. A., 1964a, Metabolism of pentoses and pentitols by Aerobacter aero genes. I. Demonstration of pentose isomerase, pentulokinase, and pentitol dehydrogenase enzyme families, J. Bacteriol. 88:838–844.

    PubMed  CAS  Google Scholar 

  • Mortlock, R. P., and Wood, W. A., 1964b, Metabolism of pentoses and pentitols by Aerobacter aerogenes. II. Mechanism of acquisition of kinase, isomerase, and dehydrogenase activity, J. Bacteriol. 88:845–849.

    PubMed  CAS  Google Scholar 

  • Mortlock, R. P., and Wood, W. A., 1971, Genetic and enzymatic mechanisms for the accommodation to novel substrate by Aerobacter aerogenes, in: Biochemical Responses to Environmental Stress (I. A. Bernstein, ed.), pp. 1–14, Plenum Press, New York.

    Google Scholar 

  • Mortlock, R. P., Fossitt, D. D., and Wood, W. A., 1965, A basis for utilization of unnatural pentoses and pentitols by Aerobacter aerogenes, Proc. Natl. Acad. Sci. USA 54:572–579.

    PubMed  CAS  Google Scholar 

  • Nolan, C., and Margoliash, E., 1968, Comparative aspects of primary structures of proteins, Annu. Rev. Biochem. 37:727–790.

    PubMed  CAS  Google Scholar 

  • Oliver, E. J., and Mortlock, R. P., 1971a, Growth of Aerobacter aerogenes on d-arabinose: Origin of the enzyme activities, J. Bacteriol. 108:287–292.

    PubMed  CAS  Google Scholar 

  • Oliver, E. J., and Mortlock, R. P., 1971b, Metabolism of d-arabinose by Aerobacter aerogenes: Purification of the isomerase, J. Bacteriol. 108:293–299.

    PubMed  CAS  Google Scholar 

  • Perutz, M. F., Bolton, W., Diamond, R., Muirhead, H., Watson, H. C., 1964, Structure of haemoglobin. An X-ray examination of reduced horse haemoglobin, Nature 203:687–690.

    PubMed  CAS  Google Scholar 

  • Prasad, I., and Schaefler, S., 1974, Regulation of the ß-glucoside system in Escherichia coli K-12, J. Bacteriol. 120:638–650.

    PubMed  CAS  Google Scholar 

  • Prasad, I., Young, B., and Schaefler, S., 1973, Genetic determination of the constitutive biosynthesis of phospho-ß-glucosidase A in Escherichia coli K-12, J. Bacteriol. 114:909–915.

    PubMed  CAS  Google Scholar 

  • Reanney, D. C., 1976, Extrachromosomal elements as possible agents of adaptation and development, Bacteriol. Rev. 40:552–590.

    PubMed  CAS  Google Scholar 

  • Rigby, P. W. J., Burleigh, B. D., and Hartley, B. S., 1974, Gene duplication in experimental enzyme evolution, Nature 251:200–204.

    PubMed  CAS  Google Scholar 

  • Riley, M., and Anilionis, A., 1978, Evolution of the bacterial genome, Annu. Rev. Microbiol. 32:519–560.

    PubMed  CAS  Google Scholar 

  • Riley, M., Solomon, L., and Zipkas, D., 1978, Relationship between gene function and gene location in Escherichia coli, J. Mol. Evol. 11:47–56.

    PubMed  CAS  Google Scholar 

  • Rolseth, S. J., Fried, V. A., and Hall, B. G., 1980, A mutant ebg enzyme which converts lactose into an inducer of the lac operon, J. Bacteriol. 142:1036–1039.

    PubMed  CAS  Google Scholar 

  • Rossmann, M. G., Moras, D., and Olsen, K. W., 1974, Chemical and biological evolution of a nucleotide-binding protein, Nature 250:194–199.

    PubMed  CAS  Google Scholar 

  • Schaefler, S., and Maas, W. K., 1967, Inducible system for the utilization of (3-glucosides inEscherichia coli. II. Description of mutant types and genetic analysis, J. Bacteriol. 93:264–272.

    PubMed  CAS  Google Scholar 

  • Senior, E., Bull, A. T., and Slater, J. H., 1976, Enzyme evolution in a microbial community growing on the herbicide Dalapon, Nature 268:476–479.

    Google Scholar 

  • Sinnott, M. L., Withers, S. G., and Viratelle, O. M., 1978, The necessity of magnesium cation for acid assistance of aglycone departure in catalysis by Escherichia coli (la) p-galactosidase, Biochem. J. 175:539–546.

    PubMed  CAS  Google Scholar 

  • Slater, J. H., Lovatt, D., Weightman, A. J., Senior, E., and Bull, A. T., 1979, The growth ofPseudomonas putida on chlorinated aliphatic acids and its dehalogenase activity, J. Gen. Microbiol. 114:125–136.

    CAS  Google Scholar 

  • Smithies, O., Connell, G. E., and Dixon, G. H., 1962, Chromosomal rearrangements and the evolution of haptoglobin genes, Nature 196:232–236.

    PubMed  CAS  Google Scholar 

  • Sparrow, A., and Nauman, A., 1976, Evolution of genome size by DNA doublings. Minimum genome size in major taxonomic groups suggests an evolutionary series of DNA doublings, Science 192:524–529.

    PubMed  CAS  Google Scholar 

  • Sridhara, S., Wu, T. T., Chused, T. M., and Lin, E. C. C., 1969, Ferrous-activated nicotinamide adenine dinucleotide-linked dehydrogenase from a mutant of Escherichia coli capable of growth on 1,2-propanediol, J. Bacteriol. 98:87–95.

    PubMed  CAS  Google Scholar 

  • Tanaka, M., Nakashima, T., Benson, A., Mower, H., and Yasunobu, K. T., 1966, The amino acid sequence of Clostridium pasteurianum ferredoxin, Biochemistry 5:1666–1681.

    PubMed  CAS  Google Scholar 

  • Tenu, J. P., Viratelle, O. M., Garnier, J., and Yon, J., 1971, dependence of the activity of p-galactosidase from Escherichia coli, Eur. J. Biochem. 20:363–370.

    Google Scholar 

  • Walsh, K. A., and Neurath, H., 1964, Trypsinogen and chymotrypsinogen as homologous proteins, Proc. Natl. Acad. Sci. USA 52:884–889.

    PubMed  CAS  Google Scholar 

  • Warren, R. A. J., 1972, Lactose utilizing mutants of lac deletion strains of Escherichia coli, Can. J. Microbiol. 18:1439–1444.

    PubMed  CAS  Google Scholar 

  • Watson, H. C., and Kendrew, J. C., 1961, Comparison between the amino acid sequences of sperm whate myoglobin and of human haemoglobin, Nature 190:670–672.

    PubMed  CAS  Google Scholar 

  • Weightman, A. J., Slater, J. H., and Bull, A. T., 1979, The partial purification of two dehalogenases from Pseudomonas putida PP3, FEMS Microbiol. Lett. 6:231–234.

    CAS  Google Scholar 

  • Wilson, A. C., Carlson, S. S., and White, T. J., 1977, Biochemical evolution, Annu. Rev. Biochem. 46:573–639.

    PubMed  CAS  Google Scholar 

  • Winkler, H. H., and Wilson, T. H., 1966, The role of energy coupling in the transport of p-galactosides by Escherichia coli, J. Biol. Chem. 241:2200–2211.

    PubMed  CAS  Google Scholar 

  • Withers, S. G., Jullien, M., Sinnott, M. L., Viratelle, O. M., and Yon, J. M., 1978, Dependence upon of steady-state parameters for the (3-galactosidase catalyzed hydrolysis of p-d-galactopyranosyl derivatives of different chemical types, Eur. J. Biochem. 87:249–256.

    PubMed  CAS  Google Scholar 

  • Wu, T. T., Lin, E. C. C., and Tanaka, S., 1968, Mutants of Aerobacter aerogenes capable of utilizing xylitol as a novel carbon source, J. Bacteriol. 96:447–456.

    PubMed  CAS  Google Scholar 

  • Zipkas, D., and Riley, M., 1975, Proposal concerning mechanism of evolution of the genome of Escherichia coli, Proc. Natl. Acad. Sci. USA 72:1354–1358.

    PubMed  CAS  Google Scholar 

  • Zuckerkandel, E., and Pauling, L., 1965, Evolutionary divergence and convergence in proteins, in: Evolving Genes and Proteins (V. Bryson and H. J. Vogel, eds.), pp. 97–166, Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Hall, B.G. (1982). Evolution on a Petri Dish. In: Hecht, M.K., Wallace, B., Prance, G.T. (eds) Evolutionary Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6968-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6968-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6970-1

  • Online ISBN: 978-1-4615-6968-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics