Skip to main content

Electrochemical Proton Gradient across the Membranes of Photophosphorylating Bacteria

  • Chapter
Biomembranes

Part of the book series: Biomembranes ((B,volume 10))

Abstract

The goal of this review is to consider recent experimental data concerning a new parameter of prokaryotic membranes—the electrochemical protons gradient (ΔμH+) predicted by Mitchell (1966)—in the case of photophosphorylating bacteria. Along with the data on bacteriochlorophyll-containing bacteria, we have included information about the extreme halophilic bacterium Halobacterium halobium, because recent experimental data allow its consideration as a photophosphorylating organism. A special section will be devoted to data about the structure of the most interesting molecular generator of ΔμH+, bacteriorhodopsin. In the final part of the chapter we intend to discuss membrane potential functions in more general terms, and do not restrict the experimental basis of discussion to photophosphorylating membranes only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdulaev, N. G., Lobanov, N. A., Kiselev, A. V., and Ovchinnikov, Yu. A., 1976, A study on structure of bacteriorhodopsin, Abstracts of the Symposium for the Chemistry and Physics of Proteins, Riga, Latvid August 4–8, 1976, p. 5.

    Google Scholar 

  • Abdulaev, N. G., Feigina, M. Yu., Kiselev, A. V., Ovchinnikov, Yu. A., Drachev, L. A., Kaulen, A. D., Khitrina, L. V., and Skulachev, V. P., 1978,Products of limited proteolysis of bacteriorhodopsin generate a membrane potential, FEBS Lett. 90: 190–194.

    PubMed  CAS  Google Scholar 

  • Akaike, N., Noma, A., and Sato, M., 1976,Electrical responses of frog taste cells to chemical stimuli, J. Physiol. 254: 87–107.

    PubMed  CAS  Google Scholar 

  • Azzi, A., Baltscheffsky, M., Baltscheffsky, H., and Vainio, H., 1971,Energy-linked changes of the membrane of Rhodospirillum rubrum chromatophores detected by the fluorescent probe 8-anilinonaphtalene-1-sulfonic acid, FEBS Lett. 17: 49–52.

    PubMed  CAS  Google Scholar 

  • Baccarini-Melandri, A., Faccri, E., and Melandri, B. A., 1975,Energy transduction in photosynthetic bacteria. VIII. Activation of the energy-transducing ATPase by inorganic phosphate, Biochim. Biophys. Acta 376: 82–88.

    Google Scholar 

  • Baltscheffsky, M., 1969,Energy conversion-linked changes of carotenoid absorbance in Rhodospirillum rubrum chromatophores, Arch. Biochim. Biophys. 130: 646.

    CAS  Google Scholar 

  • Baltscheffsky, H., and Baltscheffsky, M., 1974,Electron transport phosphorylation, Annu. Rev. Biochem. 43: 871–897.

    PubMed  CAS  Google Scholar 

  • Barsky, E. L., and Samuilov, V. D., 1972, Absorption changes of spectral forms of bacteriochlorophyll in chromatophores of Rhodospirillum rubrum, Biokhimiya 37: 1005–1011.

    Google Scholar 

  • Barsky, E. L., and Samuilov, V. D., 1973a, The bacteriochlorophyll absorption band shifts linked with the energy state of photosynthetic bacteria membranes, J. Bioenerg. 4: 391–395.

    PubMed  CAS  Google Scholar 

  • Barsky, E. L., and Samuilov, V. D., 1973, Absorption changes of carotenoids and bacteriochlorophyll in energized chromatophores of Rhodospirillum rubrum, Biochim. Biophys. Acta 325: 454–462.

    PubMed  CAS  Google Scholar 

  • Barsky, E. L, Bonch-Osmolovskaya, E. A., Ostromov, S. A., Samuilov, V. D., and Skulachev, V. P., 1975a, Study of the membrane potential and pH gradient in chromatophores and intact cells of photosynthetic bacteria, Biochim. Biophys. Acta 387: 388–395.

    PubMed  CAS  Google Scholar 

  • Barsky, E. L., Drachev, L. A., Kaulen, A. D., Kondrashin, A. A., Liberman, E. A., Ostroumov, S. A., Samuilov, V. D., Semenov, A. Yu., Skulachev, V. P., and Jasaitis, A. A., 1975b, Direct measurements of generation of electric current by lipoprotein complexes, Bioorganicheskaya Khimiya 1: 113–125.

    Google Scholar 

  • Baumann, G., and Mueller, P., 1974,A molecular model of membrane excitability, J. Supramolec. Struct. 2: 538–557.

    CAS  Google Scholar 

  • Becher, B. M., and Cassium, J. Y., 1975, Improved isolation procedures for the purple membrane of Halobacterium halobium, Prep. Biochem. 5: 161–178.

    PubMed  CAS  Google Scholar 

  • Becher, B., and Ebrey, T. G., 1976, Evidence for chromophore-chromophore (exciton) interaction in the purple membrane of Halobacterium halobium, Biochem. Biophys. Res. Commun. 69: 1–6.

    CAS  Google Scholar 

  • Beliakova, T. N., Kadziauskas, J. P., Skulachev, V. P., Smirnova, L. A., Chekulaeva, L. N., and Jasaitis, A. A., 1975, Generation of electrochemical potential of H+ ions and photophosphorylation in the cells of Halobacterium halobium, Dokl. Akad. Nauk SSSR 223: 483–486.

    PubMed  CAS  Google Scholar 

  • Berezin, I. V., Klibanov, A. M., and Martinek, K., 1975,Kinetic and thermodynamic aspects of catalysis by immobilized enzymes, Usp. Khim. 44: 17–47.

    CAS  Google Scholar 

  • Blaurock, A. E., 1975,Bacteriorhodopsin: A trans-membrane pump containing α-helix, J. Mol. Biol. 93: 139–158.

    PubMed  CAS  Google Scholar 

  • Blaurock, A. E., and Stoeckenius, W., 1971,Structure of the purple membrane, Nature New Biol. 233: 152–155.

    PubMed  CAS  Google Scholar 

  • Bobrov, V. A., Kurella, G. A., Imasheva, E. S., Yaglova, L. G., 1975, Membrane potential as a regulator of electrogenic transport of H+ ions across the plasmalemma of Nitella cells, Abstr. XII Int. Bot. Congr., p. 459.

    Google Scholar 

  • Bogomolni, R. A., Baker, R. A., Lozier, R. H., and Stoeckenius, W., 1976, Light-driven proton translocations in Halobacterium halobium, Biochim. Biophys. Acta 440: 68–88.

    CAS  Google Scholar 

  • Boguslavsky, L. I., Kondrashin, A. A., Kozlov, I. A., Metelsky, S. T., Skulachev, V. P., and Volkov, A. G., 1975,Charge transfer between water and octane phases by soluble mitochondrial ATPase (F1), bacteriorhodopsin and respiratory chain enzymes, FEBS Lett. 50: 223–226.

    PubMed  CAS  Google Scholar 

  • Borisevich, G. P., Kononenko, A. A., Venediktov, P. S., Verkhoturov, V. N., and Rubin, A. B., 1975,Measurement of carotenoid absorption spectra in dry films of Rhodospirillum rubrum chromatophores in external electric field, Biofizika 20: 250–253.

    PubMed  CAS  Google Scholar 

  • Boyer, P. D., Chance, B., Ernster, L., Mitchell, P., Racker, E., and Slater, E. C., 1977,Oxidative phosphorylation and photophosphorylation, Annu. Rev. Biochem. 46: 955–1026.

    PubMed  CAS  Google Scholar 

  • Bridgen, J., and Walker, I. D., 1976,Photoreceptor protein from the purple membrane of Halobacterium halobium. Molecular weight and retinal binding site, Biochemistry 15: 792–797.

    PubMed  CAS  Google Scholar 

  • Casadio, R., Baccarini-Melandri, A., and Melandri, B. A., 1974a, On the determination of the transmembrane pH difference in bacterial chromatophores using 9-aminoacridine, Eur. J. Biochem. 47: 121–128.

    PubMed  CAS  Google Scholar 

  • Casadio, R., Baccarini-Melandri, A., Zannoni, D., and Melandri, B. A., 1974b, Electrochemical proton gradient and phosphate potential in bacterial chromophores, FEBS Lett. 49: 203–207.

    PubMed  CAS  Google Scholar 

  • Chance, B., and Baltscheffsky, M., 1975, Carotenoid and merocyanine probes in chromatophore membranes, in: Biomembranes, Vol. 7 (L. Manson, ed.), pp. 33–55, Plenum, New York.

    Google Scholar 

  • Chignell, C. F., and Chignell, D. A., 1975, A spin label study of purple membranes from Halobacterium halobium, Biochim. Biophys. Res. Commun. 62: 136–143.

    CAS  Google Scholar 

  • Cogdell, R. J., Jackson, J. B., and Crefts, A. R., 1973, The effect of redox potential on the coupling between rapid hydrogen-ion binding and electron transport in chromatophores from Rhodopseudomonas sphaeroides, J. Bioenerg. 4: 211–227.

    PubMed  CAS  Google Scholar 

  • Crofts, A. R., Wraight, C. A., and Fleischmann, D. E., 1971,Energy conservation in the photochemical reactions of photosynthesis and its relation to delayed fluorescence, FEBS Lett. 15: 89–100.

    PubMed  CAS  Google Scholar 

  • Crofts, A. R., Evans, E. N., and Cogdell, R. J., 1974,The relation between H+-uptake and electron flow in chromatophores from photosynthetic bacteria, Ann. N.Y. Acad. Sci. 227: 227–243.

    PubMed  CAS  Google Scholar 

  • Danon, A., and Caplan, S. R., 1976,Stimulation of ATP synthesis in Halobacterium halobium R1 by light-induced or artificially created proton electrochemical potential gradients across the cell membrane, Biochim. Biophys. Acta 423: 133–140.

    PubMed  CAS  Google Scholar 

  • Danon, A., and Stoeckenius, W., 1974, Photophosphorylation in Halobacterium halobium, Proc. Natl. Acad. Sci. U.S.A. 71: 1234–1238.

    PubMed  CAS  Google Scholar 

  • DeLaat, S. W., Buwaldo, R. J. A., and Habets, A. M. M. C., 1974,Intracellular ionic distribution, cell membrane permeability and membrane potential of the Xenopus egg during first cleavage, Exp. Cell Res. 89: 1–14.

    PubMed  Google Scholar 

  • DeVault, D., Kung, M., Chu, Hess, B., and Oesterhelt, D., 1975,Photolysis of bacterial rhodopsin, Biophys. J. 15(2): 67.

    Google Scholar 

  • Drachev, L. A., Jasaitis, A. A., Kaulen, A. D., Kondrashin A. A., Liberman, E. A., Nemeček, I. B., Ostroumov, S. A., Semenov, A. Yu., and Skulachev, V. P., 1974a, Direct measurement of electric current generation by cytochrome oxidase, H+-ATPase and bacteriorhodopsin, Nature 249: 321–324.

    PubMed  CAS  Google Scholar 

  • Drachev, L. A., Kaulen, A. D., Ostroumov, S. A., and Skulachev, V. P., 1974b, Electrogenesis by bacteriorhodopsin incorporated in a planar phospholipid membrane, FEBS Lett. 39: 43–45.

    PubMed  CAS  Google Scholar 

  • Drachev, L. A., Kaulen, A. D., and Skulachev, V. P., 1978,Time resolution of the intermediate steps in the bacteriorhodopsin-linked electrogenesis, FEBS Lett. 87: 161–167.

    PubMed  CAS  Google Scholar 

  • Dutton, P. L., and Baltscheffsky, M., 1972, Oxidation-reduction potential dependence of pyrophosphate-induced cytochrome and bacteriochlorophyll reactions in Rhodospirillum rubrum, Biochim. Biophys. Acta 267: 172–173.

    PubMed  CAS  Google Scholar 

  • Evans, E. H., and Crofts, A. R., 1973,The relationship between delayed fluorescence and the H+ gradient in chloroplasts, Biochim. Biophys. Acta 292: 130–139.

    PubMed  CAS  Google Scholar 

  • Evans, E. H., and Crofts, A. R., 1974, The relationship between delayed fluorescence and the carotenoid shift in chromatophores from Rhodopseudomonas capsulata, Biochim. Biophys. Acta 333: 44–51.

    PubMed  CAS  Google Scholar 

  • Fleischman, D. E., 1971,Luminescence in photosynthetic bacteria, Photochem. Photobiol. 14: 277–286.

    CAS  Google Scholar 

  • Fleischman, D. E., and Clayton, R. K., 1968,The effect of phosphorylation uncouplers and electron transport inhibitors upon spectral shifts and delayed light emission of photosynthetic bacteria, Photochem. Photobiol. 8: 287–298.

    CAS  Google Scholar 

  • Fleischman, D. E., and Mayne, B. C., 1973,Chemically and physically induced luminescence as a probe of photosynthetic mechanisms, Curr. Top. Bioenerg. 5: 77–105.

    CAS  Google Scholar 

  • Gelman, N. S., Lukojanova, M. A., and Ostrovskii, D. N. (eds.), 1972, Bacterial membranes and respiratory chain, in: Biomembranes, Vol. 6, Plenum, New York.

    Google Scholar 

  • Gest, H., 1972,Energy conversion and generation of reducing power in bacterial photosynthesis, Adv. Microbiol. Physiol. 7: 243–282.

    CAS  Google Scholar 

  • Glinskij, V. P., Samuilov, V. D., and Skulachev, V. P., 1972, A study on mechanisms of spectral changes of carotenoids in chromatophores of Rhodospirillum rubrum, Molek. Biol. 6: 664–669.

    Google Scholar 

  • Glinskij, V. P., Samuilov, V. D., and Skulachev, V. P., 1973,Photo-induced reactions of pigments of purple bacterium Rhodospirillum rubrum in 400–600 nm region, Izv. AN SSSR, Ser. Biol. No. 1, 93–98.

    Google Scholar 

  • Gorchein, A., 1968, The relation between the pigment content of isolated chromatophores and that of the whole cell in Rhodopseudomonas sphaeroides, Proc. R. Soc. Lond. Ser. B. 170: 247–254.

    CAS  Google Scholar 

  • Grollman, E. F., Lee, G., Ambesi-Impiombato, F. S., Meldolesi, M. F., Aloj, S. M., Coon, H. G., Kaback, H. R., and Kohn, L. D., 1977,Effects of thyrotropin on the thyroid cell membrane: Hyperpolarization induced by hormone-receptor interaction, Proc. Natl. Acad. Sci. U.S.A. 74: 2352–2356.

    PubMed  CAS  Google Scholar 

  • Gromet-Elhanan, Z., 1972a, Changes in the fluorescence of atebrin and anilinonaphtalene sulphonate reflecting two different light-induced processes in Rhodospirillum rubrum chromatophores, Eur. J. Biochem. 25: 84–88.

    PubMed  CAS  Google Scholar 

  • Gromet-Elhanan, Z., 1972&, The permeability of Rhodospirillum rubrum chromatophores to thiocyanate and Perchlorate as detected by light-induced fluorochrome fluorescence changes and by photoposphorylation, Biochim. Biophys. Acta 275: 125–129.

    PubMed  CAS  Google Scholar 

  • Harold, F. M., 1972,Conservation and transformation of energy by bacterial membranes, Bacteriol. Rev. 36: 172–230.

    PubMed  CAS  Google Scholar 

  • Harold, F. M., 1977,Vectorial metabolism in: The Bacteria (Ornston, L. N., and Sokatch, J. R., eds.), Vol. 6, Academic, New York.

    Google Scholar 

  • Hato, M., Ueda, T., Kurihara, K., and Kobatake, Y., 1976,Change in zeta potential and membrane potential of slime mold Physarum polycephalum in response to chemical stimuli, Biochim. Biophys. Acta 426: 73–80.

    PubMed  CAS  Google Scholar 

  • Heyn, M. P., Bauer, P. J., and Dencher, N. A., 1975,A natural CD label to probe the structure of the purple membrane from Halobacterium halobium by means of exciton coupling effects, Biochem. Biophys. Res. Commun. 67: 897–903.

    PubMed  CAS  Google Scholar 

  • Henderson, R., 1975,The structure of the purple membrane from Halobacterium halobium: Analysis of the X-ray diffraction pattern, J. Mol. Biol. 93: 123–138.

    PubMed  CAS  Google Scholar 

  • Henderson, R., and Unwin, P. N. T., 1975,Three-dimensional model of purple membrane obtained by electron microscopy, Nature 257: 28–32.

    PubMed  CAS  Google Scholar 

  • Hubbard, J. S., Rinehart, C. A., and Baker, R. A., 1976, Energy coupling in the active transport of amino acids by bacteriorhodopsin-containing cells of Halobacterium halobium, J. Bacteriol. 125: 181–190.

    PubMed  CAS  Google Scholar 

  • Isaev, P. I., Liberman, E. A., Samuilov, V. D., Skulachev, V. D., and Tsofina, L. M., 1970, Conversion of biomembrane-produced energy into electric form. III. Chromatophores of Rhodospirillum rubrum, Biochim. Biophys. Acta 216: 22–29.

    PubMed  CAS  Google Scholar 

  • Isaev, P. I., Samuilov, V. D., and Tsofina, L. M., 1973, Photoinduced uptake of hydrophobic penetrating anions by bacteria Rhodospirillum rubrum, Biokhimiya 38: 796–800.

    CAS  Google Scholar 

  • Jackson, J. B., and Crofts, A. R., 1969, The high energy state in chromatophores from Rhodopseudomonas sphaeroides, FEBS Lett. 4: 185–189.

    PubMed  CAS  Google Scholar 

  • Jackson, J. B., and Crofts, A. R., 1971,The kinetics of light induced carotenoid changes in Rhodopeudomonas sphaeroides and their relation to electrical field generation across the chromatophore membrane, Eur. J. Biochem. 18: 120–130.

    PubMed  CAS  Google Scholar 

  • Jackson, J. B., and Dutton, P. L., 1973,The kinetic and redox Potentiometric resolution of the carotenoid shifts Rhodopseudomonas sphaeroides chromatophores: Their relationship to electric field alterations in electron transport and energy coupling, Biochim. Biophys. Acta 325: 102–113.

    PubMed  CAS  Google Scholar 

  • Jackson, J. B., Crofts, A. R., and von Stedingk, L.-V., 1968, Ion transport induced by light and antibiotics in chromatophores from Rhodospirillum rubrum, Eur. J. Biochem. 6: 41–54.

    PubMed  CAS  Google Scholar 

  • Jasaitis, A. A., 1974,Transduction of Energy in Mitochondria, G. K. Hall, Boston.

    Google Scholar 

  • Jasaitis, A. A., Kuliene, V. V., and Skulachev, V. P., 1971,Anilinonaphtalene-sulphonate fluorescence changes induced by non-enzymatic generation of membrane potential in mitochondria and submitochondrial particles, Biochim. Biophys. Acta 234: 177–181.

    PubMed  CAS  Google Scholar 

  • Jasaitis, A. A., La Van Chu, and Skulachev, V. P., 1973,Anilinonaphtalenesulfonate and some other synthetic organic ions as penetrants for mitochondrial membrane: an H+-pulse technics study, FEBS Lett. 31: 241–244.

    PubMed  CAS  Google Scholar 

  • Junge, W., 1977,Membrane potentials in photosynthesis, Annu. Rev. Plant Physiol., 28: 503–536.

    CAS  Google Scholar 

  • Karapetjan, N. V., Krakhmaleva, I. N., and Krasnovskij, A. A., 1972, Detergent action upon light-induced absorption changes of chromatophores from Chromatium minutissimum, Molek. Biol. 6: 773–782.

    Google Scholar 

  • Karapetjan, N. V., Krakhmaleva, I. N., and Krasnovskij, A. A., 1973,Light-induced transformations of bacteriochlorophylls and cytochromes in Chromatium cells and chromatophores under reductive conditions, Molek. Biol. 7: 868–875.

    Google Scholar 

  • Kaufmann, K. J., Rentzepis, P. M., Stoeckenius, W., and Lewis, A., 1976,Primary photochemical processes in bacteriorhodopsin, Biochem. Biophys. Res. Commun. 68: 1109–1115.

    PubMed  CAS  Google Scholar 

  • Kayushin, L. P., and Skulachev, V. P., 1974,Bacteriorhodopsin as an electrogenic proton pump. Reconstitution of bacteriorhodopsin proteoliposomes generating Δψ and ΔpH, FEBS Lett. 39: 39–42.

    PubMed  CAS  Google Scholar 

  • Kondrat’eva, E. N., 1963,Photosynthesizing Bacteria, Nauka-Press, Moscow.

    Google Scholar 

  • Kononenko, A. A., Lukashev, E. P., Rubin, A. B., Samuilov, V. D., Timofeev, K. N., and Venediktov, P. S., 1973, On the nature of the light-induced bacteriochlorophyll absorbance changes in chromatophores of Rhodospirillum rubrum, FEBS Lett. 30: 239–242.

    PubMed  CAS  Google Scholar 

  • Kononenko, A. A., Venediktov, P. S., Chemeris, Yu. K., Adamova, N. P., and Rubin, A. B., 1974,Relation between electron transport linked processes and delayed luminescence in photosynthesizing purple bacteria, Photo synthetic a 8: 176–183.

    CAS  Google Scholar 

  • Krinsky, N. I., 1974,Membrane photochemistry and photobiology, Photochem. Photobiol. 20: 532–535.

    PubMed  CAS  Google Scholar 

  • Kushwaha, S. C., and Kates, M., 1973, Isolation and identification of “bacteriorhodopsin” and minor C40 carotenoids in Halobacterium cutirubrum, Biochim. Biophys. Acta 316: 235–243.

    PubMed  CAS  Google Scholar 

  • Kushwaha, S. C., Kates, M., and Stoeckenius, W., 1976, Comparison of purple membrane from Halobacterium cutirubrum and Halobacterium halobium, Biochim. Biophys. Acta 426: 703–710.

    PubMed  CAS  Google Scholar 

  • Leiser, M., and Gromet-Elhanan, 1975,Post-illumination adenosine triphosphate synthesis in Rhodospirillum rubrum chromatophores. I. Conditions for maximal yields, J. Biol. Chem. 250: 84–89.

    PubMed  CAS  Google Scholar 

  • Lewis, A., Spoonhower, J., Bogomolni, R. A., Lozier, R. H., and Stoeckenius, W., 1974,Tunable laser resonance Roman spectroscopy of bacteriorhodopsin, Proc. Natl. Acad. Sci. U.S.A. 71: 4462–4466.

    PubMed  CAS  Google Scholar 

  • Liberman, E. A., and Skulachev, V. P., 1970,Conversion of biomembrane-produced energy into electric form. IV. General discussion, Biochim. Biophys. Acta 216: 30–42.

    PubMed  CAS  Google Scholar 

  • Liberman, E. A., and Tsofina, L. M., 1969,Active transport of penetrating anions by fragments of mitochondria and photophosphorylating bacteria, Biofizika 14: 1017–1022.

    CAS  Google Scholar 

  • Litvin, F. F., Sineshchekov, O. A., and Sineshchekov, V. A., 1978, Photoreceptor electric potential in the phototaxis of the alga Haematococcus pluvialis, Nature 271: 476–478.

    PubMed  CAS  Google Scholar 

  • Livne, A., and Bar-Yaakov, O., 1976, Sensitivity of erythrocyte acetylcholinesterase to inhibition by linolenoyl sorbitol, Biochim. Biophys. Acta, 419: 358–364.

    PubMed  CAS  Google Scholar 

  • Lozier, R. H., Niederberger, W., Bogomolni, R. A., Hwang, S.-B., and Stoeckenius, W., 1976,Kinetics and stoichiometry of light-induced proton release and uptake from purple membrane fragments, Halobacterium halobium cell envelopes, and phospholipid vesicles containing oriented purple membrane, Biochim. Biophys. Acta 440: 545–556.

    PubMed  CAS  Google Scholar 

  • MacDonald, R. E., and Lanyi, J. K., 1975,Light-induced leucine transport in Halobacterium halobium envelope vesicles: A chemiosmotic system, Biochemistry 14: 2882–2889.

    PubMed  CAS  Google Scholar 

  • McClare, C. W. F., 1967, Bonding between proteins and lipids in the envelopes of Halobacterium halobium, Nature 216: 766–771.

    PubMed  CAS  Google Scholar 

  • Mendelson, R., 1976,Thermal denaturation and photochemistry of bacteriorhodopsin from Halobacterium cutirubrum as monitored by resonance Raman spectroscopy, Biochim. Biophys. Acta 427: 295–301.

    Google Scholar 

  • Mevel-Ninio, M. T., and Valentine, R. C., 1975,Energy requirement for biosynthesis of DNA in Escherichia coli. Role of membrane-bound energy-transducing ATPase (coupling factor), Biochim. Biophys. Acta 376: 485–491.

    PubMed  CAS  Google Scholar 

  • Mitchell, P., 1966,Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research, Bodminster, England.

    Google Scholar 

  • Nazarenko, A. V., Samuilov, V. D., and Skulachev, V. P., 1971, Light-induced changes of pH in the cells and chromatophores of Rhodospirillum rubrum, Biokhimiya 36: 780–782.

    CAS  Google Scholar 

  • Oelze, J., and Drews, G., 1972,Membranes of photosynthetic bacteria, Biochim. Biophys. Acta 265: 209–239.

    PubMed  CAS  Google Scholar 

  • Oesterhelt, D., 1974,Bacteriorhodopsin as a light driven proton pump, in: Membrane Proteins in Transport and Phosphorylation (Azzone, G. F., Klingenberg, M. E., Quagliariello, E., and Siliprandi, N., eds.), Amsterdam, pp. 79–84.

    Google Scholar 

  • Oesterhelt, D., and Hess, B., 1973, Reversible photolysis of the purple complex in the purple membrane of Halobacterium halobium, Eur. J. Biochem. 37: 316–326.

    PubMed  CAS  Google Scholar 

  • Oesterhelt, D., and Schuhmann, L., 1974,Reconstitution of bacteriorhodopsin, FEBS Lett. 44: 262–265.

    PubMed  CAS  Google Scholar 

  • Oesterhelt, D., and Stoeckenius, W., 1971, Rhodopsin-like protein from the purple membrane of Halobacterium halobium, Nature 233: 149–152.

    CAS  Google Scholar 

  • Oesterhelt, D., and Stoeckenius, W., 1973,Functions of a new photoreceptor membrane, Proc. Natl. Acad. Sci. U.S.A. 70: 2853–2857.

    PubMed  CAS  Google Scholar 

  • Oesterhelt, D., Meentzen, M., and Schuhman, L., 1973,Reversible dissociation of the purple complex in bacteriorhodopsin and identification of 13-cis and all-trans retinal as its chromophores, Eur. J. Biochem. 40: 453–463.

    PubMed  CAS  Google Scholar 

  • Ostroumov, S. A., 1974, A new kinetic model of electron transport, Priroda No. 12, 83.

    Google Scholar 

  • Ostroumov, S. A., 1975a, Bacteriorhodopsin membranes and photosynthesis, Priroda No. 3. 58–64.

    Google Scholar 

  • Ostroumov, S. A., 1975b, A study on generation of transmembrane difference of electrochemical proton potential in photophosphorylating bacteria, Ph.D. Thesis, Moscow State University, Moscow.

    Google Scholar 

  • Ostroumov, S. A., 1976, Immobilized enzymes as a model for biological membranes, Priroda No. 2, 142.

    Google Scholar 

  • Ostroumov, S. A., 1977,Participation of chloroplasts and mitochondria in virus reproduction and the evolution of the eukaryotic cell, J. Theor. Biol. 67: 287–297.

    PubMed  CAS  Google Scholar 

  • Ostroumov, S. A., and Vorobiev, L. N., 1976, Membrane potential as a possible poly-functional regulator of membrane protein activities, Biologicheskie Nauki No. 7, 22–26.

    PubMed  Google Scholar 

  • Ostroumov, S. A., and Vorobiev, L. N., 1978,Membrane potential and surface charge densities as possible generalized regulators of membrane protein activities, J. Theor. Biol. 75: 289–297.

    PubMed  CAS  Google Scholar 

  • Ostroumov, S. A., Samuilov, V. D., and Skulachev, V. P., 1973,Transhydrogenase-induced responses of carotenoids, bacteriochlorophyll and penetrating anions in Rhodospirillum rubrum chromatophores, FEBS Lett. 31: 27–30.

    PubMed  CAS  Google Scholar 

  • Ostroumov, S. A., Samuilov, V. D., and Jasaitis, A. A., 1979,Electrochemical gradient of H+ ions across the membranes of bacteria, Usp. Sovrem. Biol. 87: 155–169.

    CAS  Google Scholar 

  • Ovchinnikov, Yu. A., Ivanov, V. T., and Shkrob, A. M., 1974,Membrane-Active Complexones, Elsevier, Amsterdam.

    Google Scholar 

  • Ovchinnikov, Yu. A., Abdulaev, N. G., Feigina, M. Yu., Kiselev, A. V., and Lobanov, N. A., 1977,Recent findings in the structure-functional characteristics of bacteriorhodopsin, FEBS Lett., 84: 1–4.

    PubMed  CAS  Google Scholar 

  • Ovchinnikov, Yu. A., Abdulaev, N. G., Feigina, M. Yu., Kiselev, A. V., Lobanov, N. A., and Nazimov, I. V., 1978,Bioorg. Khim. 4: 1573–1574.

    CAS  Google Scholar 

  • Packer, L., Murakami, S., and Mehard, C. W., 1970,Ion transport in chloroplasts and plant mitochondria, Annu. Rev. Plant Physiol. 21: 271–304.

    CAS  Google Scholar 

  • Pall, M. L., 1977, Cyclic AMP and the plasma membrane potential in Neurospora crassa, J. Biol. Chem. 252: 7146–7150.

    PubMed  CAS  Google Scholar 

  • Pinus, H. A., Rabinowitz, Ya. M., and Skulachev, V. P., 1973,The protein synthesis and the membrane potential of mitochondria, Biokhimiya 38: 730–732.

    CAS  Google Scholar 

  • Racker, E., and Hinkle, P. C., 1974,Effect of temperature on the function of proton pump, J. Memb. Biol. 17: 181–188.

    CAS  Google Scholar 

  • Racker, E., and Stoeckenius. W., 1974,Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation, J. Biol. Chem. 249: 662–663.

    PubMed  CAS  Google Scholar 

  • Renthal, R., and Lanyi, J. K., 1975,Light-dependent changes in electrical potential of cell envelope vesicles from Halobacterium halobium measured with a cyanine dye, Biophys. J. 15(2): 68.

    Google Scholar 

  • Rydström, J., 1977,Energy-linked nicotinamide nucleotide transhydrogenases, Biochim. Biophys. Acta 463: 155–184.

    PubMed  Google Scholar 

  • Santalo, R. C., 1975,Lymphocyte transformation and transmembrane potential depressors, Exp. Cell Res. 96: 429–432.

    PubMed  CAS  Google Scholar 

  • Saphon, S., Jackson, J. B., and Witt, H. T., 1975,Electrical potential changes, H+-translocation and phosphorylation induced by short flash excitation in Rhodopseudomonas sphaeroides chromatophores, Biochim. Biophys. Acta 408: 67–82.

    PubMed  CAS  Google Scholar 

  • Schuldiner, S., Rottenberg, H., and Avron, M., 1972,Determination of ApH in chloroplasts. 2. Fluorescent amines as a probe for the determination of ApH in chloroplasts, Eur. J. Biochem. 25: 64–70.

    PubMed  CAS  Google Scholar 

  • Schuldiner, S., Padan, E., Rottenberg, H., Gromet-Elhanan Z., and Avron, M., 1974,ApH and membrane potential in bacterial chromatophores, FEBS Lett. 49: 174–177.

    PubMed  CAS  Google Scholar 

  • Segel, G. B., Hollander, M. M., Gordon, B. R., Klemperer, M. R., and Lichtman, M. A., 1975,A rapid phytohemagglutinin induced alteration in lymphocyte potassium permeability, J. Cell Physiol. 86: 327–336.

    PubMed  CAS  Google Scholar 

  • Sherman, L. A., 1972, The effect of diaminodurene on the delayed light and the Carotinoid band shift in Rhodopseudomonas sphaeroides, Biochim. Biophys. Acta 283: 67–78.

    PubMed  CAS  Google Scholar 

  • Sherman, W. V., and Caplan, S. R., 1975,Arrhenius parameters of phototransients in Halobacterium halobium in physiological conditions, Nature 258: 766–768.

    PubMed  CAS  Google Scholar 

  • Sherman, W. V., Slifkin, M. A., and Caplan, S. R., 1976,Kinetic studies of phototransients in bacteriorhodopsin, Biochim. Biophys. Acta 423: 238–248.

    PubMed  CAS  Google Scholar 

  • Sineshchekov, V. A., and Litvin, F. F., 1976,Luminescence of bacteriorhodopsin in purple membranes from Halobacterium halobium cells, Biofizika 21: 313–320.

    PubMed  CAS  Google Scholar 

  • Skulachev, V. P., 1971a, Energy transformation in the respiratory chain, Curr. Top. Bioenerg. 4: 127–190.

    CAS  Google Scholar 

  • Skulachev, V. P., 1971b, Transformation of respiration and photosynthesis energy into electric form of membrane potential: Experimental proof, in: Energy Transduction in Respiration and Photosynthesis, Bari, pp. 153–171.

    Google Scholar 

  • Skulachev, V. P., 1972,Solution of the problem of energy coupling in terms of chemiosmotic theory, J. Bioenergetics 3: 25–38.

    CAS  Google Scholar 

  • Skulachev, V. P., 1974,A mechanism of oxidative phosphorylation and some general principles of bioenergetics, Usp. Sovrem. Biol. 77: 125–154.

    PubMed  CAS  Google Scholar 

  • Skulachev, V. P., 1975,Proc. Tenth FEBS Meeting, 225–238.

    Google Scholar 

  • Skulachev, V. P., 1977,Transmembrane electrochemical H+-potential as a convertible energy source for the living cell, FEBS Lett. 74: 1–9.

    PubMed  CAS  Google Scholar 

  • Skulachev, V. P., and Kozlov, I. A., 1977,Proton Adenosine Triphosphatases, Nauka, Moscow.

    Google Scholar 

  • Stedingk, L. V. von, and Baltscheffsky, H., 1966,The light-induced, reversible pH changes in chromatophores from Rhodospirillum rubrum, Arch. Biochem. Biophys. 117: 400–404.

    Google Scholar 

  • Stoeckenius, W., 1976,Structure and function of bacteriorhodopsin, Abstracts of Symposium on Chemistry and Physics of Proteins, Riga, Latvia, August 4–8, 1976, pp. 3–4.

    Google Scholar 

  • Stoeckenius, W., and Kunau, W. H., 1968,Further characterization of particulate fractions from lysed cell envelopes of Halobacterium halobium and isolation of gas vacuole membranes, J. Cell Biol. 38: 337–357.

    Google Scholar 

  • Stoeckenius, W., Lozier, R. H., and Bogomolni, R., 1979,Bacteriorhodopsin and the purple membrane of Halobacterium, Biochim. Biophys. Acta, in press.

    Google Scholar 

  • Vainio, H., Baltscheffsky, M., Baltscheffsky, H., and Azzi A., 1972,Energy-dependent changes in membranes of Rhodospirillum rubrum chromatophores as measured by 8-anilino-naphthalene-1-sulfonic acid, Eur. J. Biochem. 30: 301–306.

    PubMed  CAS  Google Scholar 

  • Van de Stadt, R. J., De Boer, B. L., and Van Dam, K., 1973,The interaction between the mitochondrial ATPase (F,) and the ATPase inhibitor, Biochim. Biophys. Acta 292: 338–349.

    PubMed  Google Scholar 

  • Vorobiev, L. N., and Ostroumov, S. A., 1975,Has membrane potential effect on DNA synthesis, Priroda No. 11, 116.

    Google Scholar 

  • Vsevolodov, N. N., Kostikov, A. P., and Rikhireva, G. T., 1974,A study of photoinduced transformations in bacteriorhodopsin membrane complex, Biofizika 19: 942–946.

    CAS  Google Scholar 

  • Waggoner, A., 1976,Optical probes of membrane potential, J. Memb. Biol. 27: 317–334.

    CAS  Google Scholar 

  • Witt, H. T., 1971,Coupling of grana, electrons, fields, ions and phosphorylation in the functional membrane of photosynthesis, Q. Rev. Biophys. 4: 365–477.

    PubMed  CAS  Google Scholar 

  • Yoshida, M., Sone, N., Hirata, H., Kagawa, Y., Kakeuchi, Y., and Ohno, K., 1975,ATP synthesis catalyzed by purified DCCD-sensitive ATPase incorporated into reconstituted purple membrane vesicles, Biochem. Biophys. Res. Commun., 67: 1295–1300.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Ostroumov, S.A., Jasaitis, A.A., Samuilov, V.D. (1979). Electrochemical Proton Gradient across the Membranes of Photophosphorylating Bacteria. In: Manson, L.A. (eds) Biomembranes. Biomembranes, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6564-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6564-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6566-6

  • Online ISBN: 978-1-4615-6564-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics