Skip to main content

P53-Mediated Apoptosis

Regulatory and Mechanistic Aspects

  • Chapter
Cancer Genes

Abstract

The p53 gene is an important tumor suppressor gene, whose inactivation appears to play a pivotal role in many types of cancer1–3. The p53 protein, encoded by this gene, is a potent sequence-specific transcriptional activator4,5. Binding of the p53 protein to genes which contain consensus p53 binding sites results in a pronounced increase in their transcription rates6–11. Transcriptional activation of relevant target genes, mediated through high affinity sequence-specific DNA binding, is believed to be responsible for many of the biological effects of the wild-type p53 (wt p53) protein. This is supported by the fact that the overwhelming majority of p53 mutations found in human tumors abrogate DNA binding, either by altering direct DNA contact residues or through destabilizing the structure of the DNA binding domain12,13.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A.J. Levine. 1993. The tumor suppressor genes. Ann. Rev Biochem. 62: 623–651.

    Article  PubMed  CAS  Google Scholar 

  2. L.A. Donehower and A. Bradley. 1993. The tumor suppressor p53. Biochim Biophys Acta. 1155: 181–205.

    PubMed  CAS  Google Scholar 

  3. R. Haffner and M. Oren. 1995. Biochemical properties and biological effects of p53. Curr Op. Genet. Develop.. 5: 84–90.

    Article  PubMed  CAS  Google Scholar 

  4. C. Prives and J.J. Manfredi. 1993. The p53 tumor suppressor protein–meeting review. Genes Dev. 7: 529–534.

    Article  PubMed  CAS  Google Scholar 

  5. B. Vogelstein and K.W. Kinzler. 1992. p53 function and dysfunction. Cell. 70: 523–526.

    Article  PubMed  CAS  Google Scholar 

  6. G. Farmer, J. Bargonetti, H. Zhu, P. Friedman, R. Prywes and C. Prives. 1992. Wild-type p53 activates transcription in vitro. Nature. 358: 83–86.

    Article  PubMed  CAS  Google Scholar 

  7. S.E. Kern, J.A. Pietenpol, S. Thiagalingam, A. Seymour, K.W. Kinzler and B. Vogelstein. 1992. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science. 256: 827–830.

    Article  PubMed  CAS  Google Scholar 

  8. G.P. Zambetti, J. Bargonetti, K. Walker, C. Prives and A.J. Levine. 1992. Wild-type p53 mediates positive regulation of gene expression through a specific DNA sequence element. Genes Dev. 6: 1143–1152.

    Article  PubMed  CAS  Google Scholar 

  9. W.D. Funk, D.T. Pak, R.H. Karas, W.E. Wright and J.W. Shay. 1992. A transcriptionally active dna-binding site for human p53 protein complexes. Mol Cell Biol. 12: 2866–2871.

    PubMed  CAS  Google Scholar 

  10. M.B. Kastan, Q.M. Zhan, W.S. Eldeiry, F. Carrier, T. Jacks, W.V. Walsh, B.S. Plunkett, B. Vogelstein and A.J. Fornace. 1992. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in Ataxia-Telangiectasia. Cell. 71: 587–597.

    Article  PubMed  CAS  Google Scholar 

  11. A. Zauberman, Y. Barak, N. Ragimov, N. Levy and M. Oren. 1993. Sequence-specific DNA binding by p53–identification of target sites and lack of binding to p53-MDM2 complexes. EMBO J. 12: 2799–2808.

    PubMed  CAS  Google Scholar 

  12. C. Prives. 1994. How loops, beta sheets, and alpha helices help us to understand p53. Cell. 78: 543–546.

    Article  PubMed  CAS  Google Scholar 

  13. S. Friend. 1994. p53: a glimpse at the puppet behind the shadow play. Science. 265: 334–335.

    Article  PubMed  CAS  Google Scholar 

  14. W.S. El-Deiry, T. Tokino, V.E. Valculescu, D.B. Levy, R. Parsons, J.M. Trent, D. Lin, W.E. Mercer, K.W. Kinzler and B. Vogelstein. 1993. WAF 1, a potential mediator of p53 tumor suppressor. Cell. 75: 817–825.

    Article  PubMed  CAS  Google Scholar 

  15. J.W. Harper, G.R. Adami, N. Wei, K. Keyomarsi and S.J. Elledge. 1993. The p21 CDK-Interacting protein cipl is a potent inhibitor of gl cyclin-dependent kinases. Cell. 75: 805–816.

    Article  PubMed  CAS  Google Scholar 

  16. Y. Xiong, G.J. Hannon, H. Zhang, D. Casso, R. Kobayashi and D. Beach. 1993. p21 is a universal inhibitor of cyclin kinases. Science. 366: 701–704.

    CAS  Google Scholar 

  17. A. Noda, Y. Ning, S.F. Venable, O.M. Pereira-Smith, and J.R. Smith. 1994. Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp. Cell Res. 211: 90–98.

    Article  PubMed  CAS  Google Scholar 

  18. V. Dulic, W.K. Kauffmann, S.J. Wilson, T.D. Tlsty, E. Lees, J.W. Harper, S.J. Elledge, and S.I. Reed. 1994. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76: 1013–1023.

    Article  PubMed  CAS  Google Scholar 

  19. W.S. EI-Deity, J.W. Harper, P.M. O’Connor, V.E. Verculescu, C.E. Canman, J. Jackson, J.A. Pietenpol, M. Burrell, D.E. Hill, Y. Wang, W.K. Wiman, W.E. Mercer, M.B. Kastan, K.W. Kohn, S.J. Elledge, K.W. Kinzler, and B. Vogelstein. 1994. WAF1/CIP1 is induced in p53-mediated GI arrest and apoptosis. Cancer Res. 54: 1169–1174.

    Google Scholar 

  20. D. Michalovitz, O. Halevy, and M. Oren. 1990. Conditional inhibition of transformation and of cell proliferation by temperature-sensitive mutant of p53. Cell 62: 671–680.

    Article  PubMed  CAS  Google Scholar 

  21. W.E. Mercer, M.T. Shields, M. Amin, G.J. Sauve, E. Appella, S.J. Ullrich and J.W. Romano. 1990. Negative growth regulation in a glioblastoma tumor cell line that conditionally expresses human wild-type p53. Proc. Natl. Acad. Sci. USA. 87: 6166–6170.

    Article  PubMed  CAS  Google Scholar 

  22. S.J. Baker, S. Markowitz, E.R. Fearon, K.V. Willson and B. Vogelstein. 1990. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science. 249: 912–915.

    Article  PubMed  CAS  Google Scholar 

  23. L. Diller, J. Kassel, C.E. Nelson, M.A. Gryka, G. Litwak, M. Gebhardt, B. Bressac, M. Ozturk, S.J. Baker, B. Vogelstein and S.H. Friend. 1990. p53 functions as a cell cycle control protein in osteosarcoma. Mol. Cell. Biol.. 10: 5772–5781.

    PubMed  CAS  Google Scholar 

  24. M.B. Kastan, O. Onyekwere, D. Sidransky, B. Vogelstein and R.W. Craig. 1991. Participation of p53 protein in the cellular response to DNA damage. Cancer Res.. 51: 6304–6311.

    PubMed  CAS  Google Scholar 

  25. N. Stewart, G.G. Hicks, F. Paraskevas and M. Mowat. 1995. Evidence for a second cell cycle block at G2/M by p53. Oncogene. 10: 109–115.

    PubMed  CAS  Google Scholar 

  26. R. Aloni-Grinstein, D. Schwartz and V. Rotter. 1995. Accumulation of wild-type p53 protein upon gamma irradiation induces a G2 arrest-dependent immunoglobulin kappa light chain gene expression. EMBO J.. 14: 1392–1401.

    PubMed  CAS  Google Scholar 

  27. S.M. Cross, C.A. Sanchez, C.A. Morgan, M.K. Schimke, R. S., R. Idzerda, W.H. Raskind and B.J. Reid. 1995. A p53-dépendent mouse spindle checkpoint. Science. 267: 1353–1356.

    Article  PubMed  CAS  Google Scholar 

  28. S. Waga, G.J. Hannon, D. Beach and B. Stillman. 1994. The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature. 369: 574–578.

    Article  PubMed  CAS  Google Scholar 

  29. Y. Luo, J. Hurwitz and J. Massague. 1995. Cell-cycle inhibition by independent CDK and PCNA binding domains in p2ICip1 Nature. 375: 159–161.

    Article  PubMed  CAS  Google Scholar 

  30. J. Chen, P. Jackson, M.W. Kirschner and A. Dutta. 1995. Separate domains of p21 involved in the inhibition of Cdk kinase and PCNA. Nature. 374: 386–388.

    Article  PubMed  CAS  Google Scholar 

  31. M.L. Smith, I.T. Chen, Q. Zhan, I. Bae, C.Y. Chen, T. Gilmer, M.B. Kastan, P.M. O’Connor and A.J.J. Fornace. 1994. Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science. 266: 1376–1380.

    Article  PubMed  CAS  Google Scholar 

  32. K. Okamoto and D. Beach. 1994. Gyclin G is a transcriptional target of the p53 tumor suppressor protein. EMBO J. 13: 4816–4822.

    PubMed  CAS  Google Scholar 

  33. A. Zauberman, A. Lupo and M. Oren. 1995. Identification of p53 target genes through immune selection of genomic DNA: the cyclin G gene contains two distinct p53 binding sites. Oncogene. 10: (in press).

    Google Scholar 

  34. X.W. Wu, J.H. Bayle, D. Olson and A.J. Levine. 1993. The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 7: 1126–1132.

    Article  PubMed  CAS  Google Scholar 

  35. Y. Barak, E. Gottlieb, T. Juven-Gershon and M. Oren. 1994. Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential. Genes Dey. 8: 1739–1749.

    Article  CAS  Google Scholar 

  36. Y. Barak, T. Juven, R. Haffner and M. Oren. 1993. mdm2 expression is induced by wild type-p53 activity. EMBO J. 12: 461–468.

    PubMed  CAS  Google Scholar 

  37. M. Selvakumaran, H.K. Lin, T. Miyashita, H.G. Wang, S. Karajewski, J.C. Reed, B. Hoffman and D. Lieberman. 1994. Immediate early up-regulation of bax expression by p53 but not TGF beta I: a paradigm for distinct apoptotic pathways. Oncogene. 9: 1791–1798.

    PubMed  CAS  Google Scholar 

  38. Q.M. Zhan, S.J. Fan, I. Bae, C. Guillouf, D.A. Liebermann, P.M. O’Connor and A.J. Fornace. 1994. Induction of bax by genotoxic stress in human cells correlates with normal p53 status and apoptosis. Oncogene. 9: 3743–3751.

    PubMed  CAS  Google Scholar 

  39. T. Miyashita and J.C. Reed. 1995. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 80: 293–299.

    Article  PubMed  CAS  Google Scholar 

  40. Z.N. Oltvai, C.L. Milliman and S.J. Korsmeyer. 1993. bcl-2 heterodimerizes in vivo with a conserved homolog, bax, that accelerates programed cell death. Cell. 74: 609–619.

    Article  PubMed  CAS  Google Scholar 

  41. K.M. Dameron, O.V. Volpert, M.A. Tainsky and N. Bouck. 1994. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science. 265: 1582–1584.

    Article  PubMed  CAS  Google Scholar 

  42. D.P. Lane. 1992. p53, guardian of the genome. Nature. 358: 15–16.

    Article  PubMed  CAS  Google Scholar 

  43. M. Oren. 1994. Relationship of p53 to the control of apoptotic cell death. Seminars Cancer Biol. 5: 221–227.

    CAS  Google Scholar 

  44. E. Yonish-Rouach, D. Resnitzky, J. Lotem, L. Sachs, A. Kimchi and M. Oren. 1991. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by Interleukin-6. Nature. 352: 345–347.

    Article  PubMed  CAS  Google Scholar 

  45. E. Yonish-Rouach, D. Grunwald, S. Wilder, A. Kimchi, E. May, J.J. Lawrence, R May and M. Oren. 1993. p53-mediated cell death - relationship to cell cycle control. Mol Cell Biol. 13: 1415–1423.

    PubMed  CAS  Google Scholar 

  46. N. Levy, E. Yonish-Rouach, M. Oren and A. Kimchi. 1993. Complementation by wild-type p53 of interleukin-6 effects on MI cells–induction of cell cycle exit and cooperativity with c-myc suppression. Mol. Cell. Bio l. 13: 7942–7952.

    CAS  Google Scholar 

  47. R. Shaw, R. Bovey, S. Tardy, R. Sahli, B. Sordat and J. Costa. 1992. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc Natl Acad Sci USA. 89: 4495–4499.

    Article  PubMed  CAS  Google Scholar 

  48. T. Ramqvist, K.P. Magnusson, Y.S. Wang, L. Szekely, G. Klein and K.G. Wiman. 1993. Wild-type p53 induced apoptosis in a Burkitt lymphoma (BL) line that carries mutant p53. Oncogene. 8: 1495–1500.

    PubMed  CAS  Google Scholar 

  49. Y.S. Wang, T. Ramqvist, L. Szekely, H. Axelson, G. Klein and K.G. Wiman. 1993. Reconstitution of wild-type p53 expression triggers apoptosis in a p53-negative v-myc retrovirus-induced T-cell lymphoma line. Cell Growth Differ. 4: 467–473.

    PubMed  CAS  Google Scholar 

  50. J.J. Ryan, R. Danish, C.A. Gottlieb and M.F. Clarke. 1993. Cell cycle analysis of p53-induced cell death in murine erythroleukemia cells. Mol Cell Biol. 13: 711–719.

    PubMed  CAS  Google Scholar 

  51. P. Johnson, S. Chung and S. Benchimol. 1993. Growth suppression of Friend virus-transformed erythroleukemia cells by p53 protein is accompanied by hemoglobin production and is sensitive to erythropoietin. Mol Cell Biol. 13: 1456–1463.

    PubMed  CAS  Google Scholar 

  52. M. Debbas and E. White. 1993. Wild-Type p53 mediates apoptosis by E1A, which is inhibited by El B. Genes Dey 7: 546–554.

    Article  CAS  Google Scholar 

  53. X.W. Wu and A.J. Levine. 1994. p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci USA. 91: 3602–3606.

    Article  PubMed  CAS  Google Scholar 

  54. E. Yonish-Rouach, J. Borde, M. Gotteland, Z. Mishal, A. Viron and E. May. 1994. Induction of apoptosis by transiently transfected metabolically stable wtp53 in transformed cell lines. Cell Death Diff.. 1: 39–47.

    CAS  Google Scholar 

  55. S.W. Lowe, E.M. Schmitt, S.W. Smith, B.A. Osborne and T. Jacks. 1993. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature. 362: 847–849.

    Article  PubMed  CAS  Google Scholar 

  56. A.R. Clarke, C.A. Purdie, D.J. Harrison, R.G. Morris. C.C. Bird, M.L. Hooper and A.H. Wyllie. 1993. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature. 362: 849–852.

    Article  PubMed  CAS  Google Scholar 

  57. W. Maltzman and L. Czyzyk. 1984. UV-irradiation stimulates levels of p53 cellular tumor antigen in non-transformed mouse cells. Mol. Cell. Biol.. 4: 1689–1694.

    PubMed  CAS  Google Scholar 

  58. S.W. Lowe, H.E. Ruley, T. Jacks and D.E. Housman. 1993. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell. 74: 957–967.

    Article  PubMed  CAS  Google Scholar 

  59. J. Lotem and L. Sachs. 1993. Hematopoietic cells from mice deficient in wild-type p53 are more resistant to induction of apoptosis by some agents. Blood. 82: 1092–1096.

    PubMed  CAS  Google Scholar 

  60. E. Gottlieb, R. Haffner, T. Von Ruden, E.F. Wagner and M. Oren. 1994. Down-regulation of wild-type p53 activity interferes with apoptosis of IL-3-dependent hematopoietic cells following IL-3 withdrawal. EMBO J. 13: 1368–1374.

    PubMed  CAS  Google Scholar 

  61. E. Gottlieb, R. Haffner, E. Yonish-Rouach, T. von Ruden, E. Wagner and M. Oren. 1994. Wild type p53 activity contributes to dependence on hematopoietic survival factors. Apoptosis (E. Mihich and R.T. Schimke, eds.). pp. 31–45. Plenum. New York.

    Google Scholar 

  62. Y.M. Zhu, D.A. Bradbury and N.H. Russell. 1994. Wild-type p53 is required for apoptosis induced by growth factor deprivation in factor-dependent leukaemic cells. Br J Cancer 69: 468–472.

    Article  PubMed  CAS  Google Scholar 

  63. C.E. Canman, T.M. Gilmer, S.B. Coutts and M.B. Kastan. 1995. Growth factor modulation of p53-mediated growth arrest versus apoptosis. Genes Dev.. 9: 600–611.

    CAS  Google Scholar 

  64. J. Martinez, I. Georgoff, J. Martinez and A.J. Levine. 1991. Cellular localization and cell cycle regulation by a temperature-sensitive p53-protein. Genes Del,. 5: 151–159.

    Article  CAS  Google Scholar 

  65. J.V. Gannon and D.P. Lane. 1991. Protein synthesis required to anchor a mutant p53 protein which is temperature-sensitive for nuclear transport. Nature. 349: 802–806.

    Article  PubMed  CAS  Google Scholar 

  66. L. Sachs. 1990. The control of growth and differentiation in normal and leukemic blood cells. Cancer. 65: 2196–2206.

    Article  PubMed  CAS  Google Scholar 

  67. K. Vousden. 1993. Interactions of human papillomavirus transforming proteins with the products of tumor suppressor genes. FASEB J. 7: 872–879.

    PubMed  CAS  Google Scholar 

  68. Y. Haupt, S. Rowan and M. Oren. 1995. p53-mediated apoptosis in HeLa cells can be overcome by excess pRB. Oncogene. 10: 1563–1571.

    PubMed  CAS  Google Scholar 

  69. X.-Q. Qin, D.M. Livingston, W.J. Kaelin and P.D. Adams. 1994. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc. Natl. Acad. Sci. USA. 91: 10918–10922.

    Article  PubMed  CAS  Google Scholar 

  70. E. Shaulian, I. Haviv, Y. Shaul and M. Oren. 1995. Transcriptional repression by the C-terminal domain of p53. Oncogene. 10: 671–680.

    PubMed  CAS  Google Scholar 

  71. Y.J. Cho, S. Gorina, P.D. Jeffrey and N.P. Pavletich. 1994. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science. 265: 346–355.

    Article  PubMed  CAS  Google Scholar 

  72. J.Y. Lin, J.D. Chen, B. Elenbaas and A.J. Levine. 1994. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 8: 1235–1246.

    Article  PubMed  CAS  Google Scholar 

  73. D. Michael-Michalovitz, F. Yehiely, E. Gottlieb and M. Oren. 1991. Simian virus-40 can overcome the antiproliferative effect of wild-type-p53 in the absence of stable large t-antigen-p53 binding. J. Virol. 65: 4160–4168.

    PubMed  CAS  Google Scholar 

  74. R.S. Quartin, C.N. Cole, J.M. Pipas and A.J. Levine. 1994. The amino-terminal functions of the simian virus 40 large T antigen are required to overcome wild-type p53-mediated growth arrest of cells. J Virol. 68: 1334–1341.

    PubMed  CAS  Google Scholar 

  75. R.J.C. Slebos, M.H. Lee, B.S. Plunkett, T.D. Kessis, B.O. Williams, T. Jacks, L. Hedrick, M.B. Kastan and K.R. Cho. 1994. p53-dependent GI arrest involves pRB-related proteins and is disrupted by the human papillomavirus 16 E7 oncoprotein. Proc Natl Acad Sci USA. 91: 5320–5324.

    Article  PubMed  CAS  Google Scholar 

  76. H. Pan and A.E. Griep. 1994. Altered cell cycle regulation in the lens of HPV-16 E6 or E7 transgenic mice: implications for umor suppressor gene funciton in development. Genes Dev. 8: 1285–1299.

    Article  PubMed  CAS  Google Scholar 

  77. A.E. White, E.M. Livanos and T.D. Tlsty. 1994. Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes Dev. 8: 666–677.

    Article  PubMed  CAS  Google Scholar 

  78. G.W. Demers, S.A. Foster, C.L. Halbert and D.A. Galloway. 1994. Growth arrest by induction of p53 in DNA damaged keratinocytes is bypassed by human papillomavirus 16 E7. Proc Natl Acad Sci USA. 91: 4382–4386.

    Article  PubMed  CAS  Google Scholar 

  79. E.S. Hickman, S.M. Picksley and K.H. Vousden. 1994. Cells expressing HPV 16 E7 continue cell cycle progression following DNA damage induced p53 activation. Oncogene. 9: 2177–2181.

    PubMed  CAS  Google Scholar 

  80. S.D. Morgenbesser, B.O. Williams, T. Jacks and R.A. Depinho. 1994. p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature. 371: 72–74.

    Article  PubMed  CAS  Google Scholar 

  81. M.L. Smith, Q.M. Zhan, I.S. Bae and A.J. Fornace. 1994. Role of retinoblastoma gene product in p53-mediated DNA damage response. Exp Cell Res. 215: 386–389.

    Article  PubMed  CAS  Google Scholar 

  82. S.W. Lowe and H.E. Ruley. 1993. Stabilization of the p53 tumor suppressor is induced by adenovirus-5 El A and accompanies apoptosis. Genes Dev. 7: 535.

    Article  PubMed  CAS  Google Scholar 

  83. H. Hermeking and D. Eick. 1994. Mediation of c-myc-induced apoptosis by p53. Science. 265: 2091–2093.

    Article  PubMed  CAS  Google Scholar 

  84. A.J. Wagner, J.M. Kokontis and N. Hay. 1994. Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21waf1/cip1. Genes Dev. 8: 2817–2830.

    Article  PubMed  CAS  Google Scholar 

  85. C. Caelles, A. Helmberg and M. Karin. 1994. p53-dependent apoptosis in the absence of transcriptional activation of p53 target genes. Nature. 370: 220–223.

    Article  PubMed  CAS  Google Scholar 

  86. T. Crook, N.J. Marston, E.A. Sara and K.H. Vousden. 1994. Transcriptional activation by p53 correlates with growth suppression but does not preclude the acquisition of transforming function. Cell. 79: 817–827.

    Article  PubMed  CAS  Google Scholar 

  87. K. Ory, Y. Legros, C. Auguin and T. Soussi. 1994. Analysis of the most representative tumour-derived p53 mutants reveals that changes in protein conformation are not correlated with loss of transactivation or inhibition of cell proliferation. EMBO J.. 13: 3496–3504.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Haupt, Y. et al. (1996). P53-Mediated Apoptosis. In: Mihich, E., Housman, D. (eds) Cancer Genes. Pezcoller Foundation Symposia, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5895-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5895-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7704-7

  • Online ISBN: 978-1-4615-5895-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics