Skip to main content

Abstract

The issue of this paper is peripheral fatigue, in particular, fatigue due to muscular impairment during dynamic exercise with small muscle groups. Small muscle groups in this sense are of such a size that the change in concentration of circulating catecholamines even during exhausting exercise is negligible. Thus a small muscle group is, in a way, comparable to a muscle exercising in vitro. Another similarity is the large distribution volume for substances leaving the muscle. In humans, forearm or calf muscle exercise can be regarded as exercise with small muscle groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arnolda, L., M. Conway, M. Dolecki, H. Sharif, B. Rajagopalan, J.G.G. Ledingham, P. Sleight, and G.K. Radda. Skeletal muscle metabolism in heart failure: A 31P nuclear magnetic resonance spectroscopy study of leg muscle. Clin. Sci. 79: 583–589, 1990.

    PubMed  CAS  Google Scholar 

  2. Bigland-Ritchie, B., E. Cafarelli, and N.K. Vollestad. Fatigue of submaximal static contractions. Acta Physiol. Scand. 128 (Suppl 556): 137–148, 1986.

    Google Scholar 

  3. Cooke, R., and E. Pate. The inhibition of muscle contraction by the products of ATP hydrolysis. In: Biochemistry of Exercise, VII. edited by A.W. Taylor, P.D. Gollnick, H.J. Green, CD. Ianuzzo, E.G. Noble, G. Metivier, and J.R. Sutton. Champaign, II, USA: Human Kinetics, 1990, pp. 59–72.

    Google Scholar 

  4. De Haan, A. High-energy phosphates and fatigue during repeated dynamic contractions of rat muscle. Exp. Physiol. 75: 851–854, 1990.

    PubMed  Google Scholar 

  5. Dudley, C.R.K., D.J. Taylor, L.L. NG, G.J. Kemp, P.J. Ratcliffe, G.K. Radda, and J.G.G. Ledingham. Evidence for abnormal Na+/H+ antiport activity detected by phosphorus nuclear magnetic resonance spectroscopy in exercising skeletal muscle of patients with essential hypertension. Clin. Sci. 79: 491–497. 1990.

    PubMed  CAS  Google Scholar 

  6. Edwards, R.H.T. Human muscle function and fatigue. In: Human Muscle Fatigue: Physiological Mechanisms, edited by R. Porter and J. Whelan. London: Pitman Medical, 1981, pp. 1–18.

    Google Scholar 

  7. Ferenczi, M.A, Y.E. Goldman, and R.M. Simmons. The dependence of force and shortening velocity on substrate concentration in skinned muscle fibres from Rana temporaria. J. Physiol. (Lond.) 350: 519–543, 1984.

    CAS  Google Scholar 

  8. Hirche, H., E. Schumacher, and H. Hagemann. Extracellular K+ balance of the gastrocnemius muscle of the dog during exercise. Plügers Arch. 387: 231–237, 1980.

    Article  CAS  Google Scholar 

  9. Juel, C. Potassium and sodium shifts during in vitro isometric muscle contraction, and the time course of the ion-gradient recovery. Pflügers Arch. 406: 458–463, 1986.

    Article  PubMed  CAS  Google Scholar 

  10. Juel, C. Muscle action potential propagation velocity changes during activity. Musc, nerve 11: 714–719, 1988.

    Article  CAS  Google Scholar 

  11. Katz, A., K. Sahlin, and J. Henriksson. Muscle ATP turnover rate during isometric contraction in humans. J. Appl. Physiol. 60(6): 1839–1842, 1986.

    PubMed  CAS  Google Scholar 

  12. Moritani, T., M. Muro, and A. Kijima. Electromechanical changes during electrically induced and maximal voluntary contractions: electrophysiologic responses of different muscle fibre types during sustained contractions. Exp. Neurol. 88: 471–483, 1984.

    Article  Google Scholar 

  13. Sahlin, K., L. Edstroem, and H. Sjoeholm. Fatigue and phosphocreatine depletion during carbon dioxideinduced acidosis in rat muscle. Am. J. Physiol. 245: 15–20, 1983.

    Google Scholar 

  14. Simonson, E., and P. Weiser. Physiological Aspects and Physiological Correlates of Work Capacity and Fatigue. Springfield, II, USA: Charles C. Thomas, 1976.

    Google Scholar 

  15. Sjögaard, G. Exercise-induced muscle fatigue: The significance of potassium. Acta physiol. Scand. 140(Suppl 593), 1990.

    Google Scholar 

  16. Taylor, D.J., P. Styles, M. Matthews, D.A. Arnold, D.G. Gadian, P. Bore, and G.K. Radda. Energetics of human muscle: Exercise-induced ATP Depletion. Magn. reson. med. 3: 44–54, 1986.

    Article  PubMed  CAS  Google Scholar 

  17. Tibes, U., E. Haberkorn-Butendeich, and F. Hammersen. Effect of contraction on lymphatic, venous, and tissue electrolytes and Metabolites in rabbit skeletal muscle. Pflügers Arch. 368: 195–202, 1977.

    Article  PubMed  CAS  Google Scholar 

  18. Westerblad, H., and D.G. Allen. The contribution of [Ca 2+ ]i to the slowing of relaxation in fatigued single fibres from mouse skeletal muscle. J. Appl. Physiol. 468: 729–740, 1993.

    CAS  Google Scholar 

  19. Wong, R., N. Davies, D. Marshall, P. Allen, G. Zhu, G. Lopaschuk, and T. Montague. Metabolism of normal skeletal muscle during dynamic exercise to clinical fatigue: In vivo assessment by nuclear magnetic resonance spectroscopy. Can. J. Cardiol. 6(9):391–395, 1990.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maassen, N. (1996). Mechanism of Fatigue in Small Muscle Groups. In: Steinacker, J.M., Ward, S.A. (eds) The Physiology and Pathophysiology of Exercise Tolerance. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5887-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5887-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7700-9

  • Online ISBN: 978-1-4615-5887-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics