Skip to main content

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 26))

  • 204 Accesses

Abstract

The metabolism of Cu is intimately linked with its nutrition. From gut to enzymes, Cu bioavailability to key enzymes and other components operates through a complex mechanism that uses transport proteins as well as small molecular weight ligands. Steps in Cu transport through the blood, absorption by cells, and incorporation into enzymes are slowly being understood. Cloning and sequencing of the genes for Menkes disease and Wilson disease has shown that membrane-bound enzymes analogous to Cu-ATPases in prokaryotes are equally important to Cu transport and homeostasis in mammalian cells. The primary structure of the mammalian Cu-ATPases has been deduced from cDNAs from tissues and organs. It now appears that mammalian Cu-ATPase have tissue and developmental specificity. In this review, we will focus on the Cu-ATPase that has been identified with Menkes disease. An emphasis will be placed on the existence of multiple forms of the ATPase and some indication as to how the different isoforms befit their role in the normal physiology of copper, specifically transmembrane transport and maintenance of a favorable internal cellular environment. (Mol Cell Biochem 188: 57–62, 1998)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Danks DM, Campbell PE, Walker-Smith J, et al.: Menkes’ kinky-hair syndrome. Lancet 1: 1100–1103, 1972

    Article  PubMed  CAS  Google Scholar 

  2. Danks DM: Copper Deficiency in Humans. Ann Rev Nutr 8: 235–257, 1988

    Article  CAS  Google Scholar 

  3. Vulpe C, Levinson B, Whitney S, Packman S, Gitschier J: Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nature Genet 3: 7–13, 1993

    Article  PubMed  CAS  Google Scholar 

  4. Mercer JFB, Livingston J, Hall B, et al.: Isolation of a partial candidate gene for Menkes disease by positional cloning. Nature Genet 3: 20–25, 1993

    Article  PubMed  CAS  Google Scholar 

  5. Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW: The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nature Genet 5: 327–336, 1993

    Article  PubMed  CAS  Google Scholar 

  6. Tanzi RE, Petrukhin K, Chernov I, et al.: The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nature Genet 5: 344–350, 1993

    Article  PubMed  CAS  Google Scholar 

  7. Petrukhin K, Fischer SG, Pirastu M, et al.: Mapping, cloning and genetic characterization of the region containing the Wilson disease gene. Nature Genet 5: 338–343, 1993

    Article  PubMed  CAS  Google Scholar 

  8. Thomas GR, Forbes JR, Roberts EA, Walshe JM, Cox DW: The Wilson disease gene: Spectrum of mutations and their consequences. Nat Genet 9: 210–217, 1995

    Article  PubMed  CAS  Google Scholar 

  9. Vulpe CD, Packman S: Cellular copper transport. Ann Rev Nutr 15: 293–322, 1995

    Article  CAS  Google Scholar 

  10. Chelly J, Turner Z, Tonnesen T, et al.: Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nature Genet 3: 14–19, 1993

    Article  PubMed  CAS  Google Scholar 

  11. Yamaguchi Y, Heiny ME, Gitlin JD: Isolation and characterization of a human liver cDNAas a candidate gene for Wilson’s disease. Biochem Biophys Res Commun 197: 271–277, 1993

    Article  PubMed  CAS  Google Scholar 

  12. Solioz M, Odermatt A, Krapf R: Copper pumping ATPases: Common concepts in bacteria and man. FEBS Lett 346: 44–47, 1994

    Article  PubMed  CAS  Google Scholar 

  13. Shiraishi N, Aono K, Taguchi T: Copper metabolism in the macular mutant mouse: An animal model of Menkes’ kinky-hair disease. Biol Neonate 54: 173–180, 1988

    Article  PubMed  CAS  Google Scholar 

  14. Shiraishi N, Kondoh S, Hiraki Y, Aono K, Taguchi T: Metallothionein in kidney and liver of the macular mouse as an animal model of Menkes’ kinky hair disease. Physiol Chem Phys Med NMR 19: 227–233, 1987

    PubMed  CAS  Google Scholar 

  15. Shiraishi N, Taguchi T, Kinebuchi H. Copper-induced toxicity in macular mutant mouse: An animal model for Menkes’ kinky-hair disease. Toxicol Appl Pharmacol 110: 89–96, 1991

    Article  PubMed  CAS  Google Scholar 

  16. Kodama H, Abe T, Takama M, Takahashi I, Kodama M, Nishimura M: Histochemical localization of copper in the intestine and kidney of macular mice: Light and electron microscopic study. J Histochem Cytochem 41: 1529–1535, 1993

    Article  PubMed  CAS  Google Scholar 

  17. Camakaris J, Petris MJ, Bailey L, et al.: Gene amplification of the Menkes (MNK; ATP7A) P-type ATPase gene of CHO cells is associated with copper resistance and enhanced copper effiux. Hum Mol Genet 4: 2117–2123, 1995

    Article  PubMed  CAS  Google Scholar 

  18. Qian YC, Tiffany-Castiglioni E, Harris ED: Copper transport and kinetics in cultured C6 rat glioma cells. Am J Physiol 269 (Cell Physiol 39): C892–C898, 1995

    PubMed  CAS  Google Scholar 

  19. Mann JR, Camakaris J, Danks DM: Copper metabolism in mottled mouse mutants. Defective placental transfer of 64Cu to foetal brindled (Mobr) mice. Biochem J 186: 629–631, 1980

    PubMed  CAS  Google Scholar 

  20. Yuan DS, Stearman R, Danois A, Dunn T, Beeler T, Klausner RD: The Menkes/Wilson gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc Natl Acad Sci (USA) 92: 2632–2636, 1995

    Article  CAS  Google Scholar 

  21. Qian YC, Tiffany-Castiglioni E, Harris ED. Functional analysis of a genetic defect of copper transport (Menkes disease) in different cell lines. Am J Physiol 271 (Cell Physiol 40): C378–C384, 1995

    Google Scholar 

  22. Qian YC, Tiffany-Castiglioni E, Harris ED: Coincident expression of the Menkes gene with copper effiux in human placental cells. Am J Physiol 270 (Cell Physiol 39): C1880–C1884, 1995

    Google Scholar 

  23. Riordan JR, Jolicoeur-Paquet L: Metallothionein accumulation may account for intracellular copper retention in Menkes’ disease. J Biol Chem 257: 4639–4645, 1982

    PubMed  CAS  Google Scholar 

  24. Leone A, Pavlakis GN, Hamer DH: Menkes’ disease: Abnormal metallothionein gene regulation in response to copper. Cell 40: 301–309, 1985

    Article  PubMed  CAS  Google Scholar 

  25. Sone T, Yamaoka K, Minami Y, Tsunoo H: Induction of metallothionein synthesis in Menkes’ and normal lymphoblastoid cells is controlled by the level of intracellular copper. J Biol Chem 262: 5878–5885, 1987

    PubMed  CAS  Google Scholar 

  26. Herzberg NH, Wolterman RA, van den Berg GJ, Barth PG, Bolhuis PA: Metallothionein in Menkes’ disease: Induction in cultured muscle cells. J Neur Sci 100: 50–56, 1990

    Article  CAS  Google Scholar 

  27. Waters MG, Clary DO, Rothman JE: A novel 115-kD peripheral membrane protein is required for intercisternal transport in the Golgi stack. J Cell Biol 118: 1015–1026, 1992

    Article  PubMed  CAS  Google Scholar 

  28. Barroso M, Nelson DS, Sztul E: Transcytosis-associated protein (TAP)/ p115 is a general fusion factor required for binding of vesicles to acceptor membranes. Proc Nat Acad Sci (USA) 92: 527–531, 1995

    Article  CAS  Google Scholar 

  29. Petris MJ, Mercer JFB, Culvenor JG, Gleeson PA, Camakaris J: Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: A novel mechanism of regulated trafficking. EMBO J 15: 6084–6095, 1996

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Harris, E.D., Qian, Y., Reddy, M.C.M. (1998). Genes regulating copper metabolism. In: Pierce, G.N., Izumi, T., Rupp, H., Grynberg, A. (eds) Molecular and Cellular Effects of Nutrition on Disease Processes. Developments in Molecular and Cellular Biochemistry, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5763-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5763-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7641-5

  • Online ISBN: 978-1-4615-5763-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics