Skip to main content

Abstract

Polycrystalline-silicon films formed by chemical vapor deposition are used in a wide variety of ULSI applications requiring very different electrical properties. High-value load resistors for static random-access-memory (RAM) cells utilize the high resistance of lightly doped polysilicon to provide a convenient and stable resistor that limits the current flowing in the cell. At the other extreme, the excellent technological compatibility of polysilicon with high-temperature, integrated-circuit processing allows straightforward fabrication of self-aligned gates and convenient interconnections in ULSI circuits. Although a resistivity of less than about 10-3 Ω-cm — eight orders of magnitude less than for static RAM load resistors — is routinely achieved, the lower bound on the resistivity of polysilicon can limit the performance of silicon-gate integrated circuits that use polysilicon interconnections to conduct signals long distances across a chip [5.1]. As feature sizes become smaller and intrinsic transistor delays decrease on chips of increasing overall dimensions, the resistance of polysilicon interconnections is becoming a more serious limitation on integrated-circuit performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. K Saraswat and F Mohammadi, “Effect of scaling of interconnections on the time delay of VLSI circuits,” IEEE Trans. Electron Devices, ED-29, 645–650 (April 1982).

    Article  Google Scholar 

  2. J D Joseph and T I Kamins, “Resistivity of chemically deposited polycrystalline-silicon films,” Solid-State Electron. 15, 355–358 (March 1972).

    Article  Google Scholar 

  3. N F Mott, “Conduction in glasses containing transition metal ions” J. Non-Cryst. Solids, 1, 1–17 (December 1968).

    Article  Google Scholar 

  4. C A Dimitriadis and P A Coxon, “Hopping conduction in undoped low-pressure chemically vapor deposited polycrystalline silicon films in relation to the film deposition conditions,” J. Appl. Phys. 64, 1601–1604 (1 August 1988).

    Article  Google Scholar 

  5. J D Cressler, W Hwang, and T-C Chen, “On the temperature dependence of majority carrier transport in heavily arsenic-doped polycrystalline silicon thin films,” J. Electrochem. Soc. 136, 794–804 (March 1989).

    Article  Google Scholar 

  6. A L Fripp, “Dependence of resistivity on the doping level of polycrystalline silicon,” J. Appl. Phys. 46, 1240–1244 (March 1975).

    Article  Google Scholar 

  7. T I Kamins, “Hall mobility in chemically deposited polycrystalline silicon,” J. Appl. Phys. 42, 4357–4365 (October 1971).

    Article  Google Scholar 

  8. J Y W Seto, “The electrical properties of polycrystalline silicon films,” J. Appl. Phys. 46, 5247–5254 (December 1975).

    Article  Google Scholar 

  9. M Cao, T King, and K Saraswat, “Determination of the densities of gap states in hydrogenated polycrystalline Si and Si0.8Ge0.2 films,” Appl. Phys. Lett. 61, 672–674 (10 August 1992).

    Article  Google Scholar 

  10. G Baccarani, B Riccó, and G Spadini, “Transport properties of polycrystalline silicon films,” J. Appl. Phys. 49, 5565–5570 (November 1978).

    Article  Google Scholar 

  11. J P Colinge, E Demoulin, F Delannay, M Lobet and J M Temerson, “Grain size and resistivity of LPCVD polycrystalline silicon films,” J. Electrochem. Soc. 128, 2009–2014 (September 1981).

    Article  Google Scholar 

  12. G Baccarani, M Impronta, B Riccó, and P Ferla, “I-V characteristics of polycrystalline silicon resistors,” Revue de Physique Appliqueé, 13, 777–782 (December 1978).

    Article  Google Scholar 

  13. G J Korsh and R S Muller, “Conduction properties of lightly doped, polycrystalline silicon,” Solid-State Electron. 21, 1045–1051 (August 1978).

    Article  Google Scholar 

  14. A K Ghosh, C Fishman, and T Feng, “Theory of the electrical and photovoltaic properties of polycrystalline silicon,” J. Appl. Phys. 51, 446–454 (January 1980).

    Article  Google Scholar 

  15. M M Mandurah, K C Saraswat and T I Kamins, “Phosphorus doping of low pressure chemically vapor-deposited silicon films,” J. Electrochem. Soc. 126, 1019–1023 (June 1979).

    Article  Google Scholar 

  16. A K Ghosh, A Rose, H P Maruska, D J Eustace, and T Feng, “Hall measurements and grain-size effects in polycrystalline silicon,” Appl. Phys. Lett. 37, 544–546 (15 September 1980).

    Article  Google Scholar 

  17. A K Ghosh, A Rose, H P Maruska, T Feng, and D J Eustace, “Interpretation of Hall and resistivity measurements in polycrystalline silicon” J. Electronic Mat. 11, 237–260 (March 1982).

    Article  Google Scholar 

  18. R H Bube, “Interpretation of Hall and photo-Hall effects in inhomogeneous materials,” Appl. Phys. Lett. 13, 136–139 (15 August 1968).

    Article  Google Scholar 

  19. M S Bennett, “Relationship between Hall constant and carrier densities in polycrystalline semiconductor film,” J. Appl. Phys. 58, 3470–3475 (1 November 1985).

    Article  Google Scholar 

  20. J W Orton, “Interpretation of Hall mobility in polycrystalline thin films,” Thin Solid Films, 86, 351–357 (December 18, 1981).

    Article  Google Scholar 

  21. G E Pike and C H Seager, “The dc voltage dependence of semiconductor grain-boundary resistance,” J. Appl. Phys. 50, 3414–3422 (May 1979).

    Article  Google Scholar 

  22. J M Andrews, “Electrical conduction in implanted polycrystalline silicon,” J. Electronic Materials, 8, 227–247 (May 1979).

    Article  Google Scholar 

  23. C H Seager and G E Pike, “Grain boundary states and varistor behavior in silicon bicrystals,” Appl. Phys. Lett. 35, 709–711 (1 November 1979).

    Article  Google Scholar 

  24. C H Seager, “Grain boundary recombination: Theory and experiment in silicon,” J. Appl. Phys. 52, 3960–3968 (June 1981).

    Article  Google Scholar 

  25. W B Jackson, N M Johnson, and D K Biegelsen, “Density of gap states of silicon grain boundaries determined by optical absorption,” Appl. Phys. Lett. 43, 195–197 (15 July 1983).

    Article  Google Scholar 

  26. W K Schubert and P M Lenahan, “Spin dependent trapping in a polycrystalline silicon integrated circuit resistor,” Appl. Phys. Lett. 43, 497–499 (1 September 1983).

    Article  Google Scholar 

  27. W E Spear and P G LeComber, “Electronic properties of substitutionally doped amorphous Si and Ge,” Phil. Mag. 33, 935–949 (1976).

    Article  Google Scholar 

  28. G Queirolo, E Servida, L Baldi, G Pignatel, A Armigliato, S Frabboni, and F Corticelli, “Dopant activation, carrier mobility, and TEM studies in polycrystalline silicon films,” J. Electrochem. Soc. 137, 967–971 (March 1990).

    Article  Google Scholar 

  29. V Srikant, D R Clarke, and P V Evans, “Simulation of electron transport across charged grain boundaries,” Appl. Phys. Lett. 69, 1755–1757 (16 September 1996) and Comment H F Mataré, Appl. Phys. Lett. 70, 2055 (14 April 1997).

    Article  Google Scholar 

  30. C-Y Lu, N C-C Lu, and C-S Wang, “Effects of grain-boundary trapping-state energy distribution on the activation energy of resistivity of polycrystalline-silicon films,” Solid-State Electron. 27, 463–466 (May 1984).

    Article  MATH  Google Scholar 

  31. N C C Lu, L Gerzberg, C Y Lu, and J D Meindl, “Thermionic field emission in polycrystalline-silicon films,” Fall 1980 Electrochemical Society Meeting (Hollywood FL, October 1980), abstract 483, pp. 1103–1105.

    Google Scholar 

  32. N C-C Lu, L Gerzberg, C-Y Lu, and J D Meindl, “A conduction model for semiconductor-grain-boundary-semiconductor barriers in polycrystalline-silicon films,” IEEE Trans. Electron Devices, ED-30, 137–149 (February 1983).

    Article  Google Scholar 

  33. M M Mandurah, K C Saraswat, and T I Kamins, “A model for conduction in polycrystalline silicon-Part I: Theory,” IEEE Trans. Electron Devices, ED-28, 1163–1171 (October 1981).

    Article  Google Scholar 

  34. E L Murphy and R H Good, Jr., “Thermionic emission, field emission and the transition region,” Phys. Rev. 102, 1464–1473 (June 15, 1956).

    Article  Google Scholar 

  35. M M Mandurah, K C Saraswat, and T I Kamins, “A model for conduction in polycrystalline silicon-Part II: Comparison of theory and experiment,” IEEE Trans. Electron Devices, ED-28, 1171–1176 (October 1981).

    Article  Google Scholar 

  36. D P Joshi and R S Srivastava, “A model of electrical conduction in polycrystalline silicon,” IEEE Trans. Electron Devices, ED-31, 920–927 (July 1984).

    Article  Google Scholar 

  37. J Martinez, A Criado, and J Piqueras, “Grain boundary potential determination in polycrystalline silicon by the scanning light spot technique,” J. Appl. Phys. 52, 1301–1305 (March 1981).

    Article  Google Scholar 

  38. E Loh, “Interpretation of dc characteristics of phosphorus-doped polycrystalline silicon films: Conduction across low-barrier grain boundaries,” J. Appl. Phys. 54, 4463–4466 (August 1983).

    Article  Google Scholar 

  39. N C-C Lu, and C-Y Lu, “I-V characteristics of polysilicon resistors at high electric field and the non-uniform conduction mechanism,” Solid-State Electron. 27, 797–805 (August/September 1984).

    Article  Google Scholar 

  40. M Taniguchi, M Hirose, Y Osaka, S Hasegawa, and T Shimizu, “Current transport in doped polycrystalline silicon,” Japan. J. Appl. Phys. 19, 665–673 (April 1980).

    Article  Google Scholar 

  41. M J McCarthy, M D Karim, and J A Reimer, “The properties of phosphorus in polycrystalline silicon—A nuclear magnetic resonance study,” Spring 1986 Mat. Res. Soc. Meeting (Palo Alto CA, April 17, 1986), paper F5.19.

    Google Scholar 

  42. D Ballutaud, M Aucouturier, and F Bobonneau, “Electron spin resonance study of hydrogenation effects in polycrystalline silicon,” Appl. Phys. Lett. 49, 1620–1622 (8 December 1986).

    Article  Google Scholar 

  43. N H Nickel, N M Johnson, and W B Jackson, “Hydrogen passivation of grain boundary defects in polycrystalline silicon,” Appl. Phys. Lett. 62, 3285–3287 (21 June 1993).

    Article  Google Scholar 

  44. T Makino and H Nakamura, “The influence of plasma annealing on electrical properties of polycrystalline Si,” Appl. Phys. Lett. 35, 551–552 (1 October 1979).

    Article  Google Scholar 

  45. D L Chen, D W Greve, and A M Guzman, “Influence of hydrogen implantation on the resistivity of polycrystalline silicon,” J. Appl. Phys. 57, 1408–1410 (15 February 1985).

    Article  Google Scholar 

  46. E S Cielaszyk, K H R Kirmse, R A Stewart, and A E Wendt, “Mechanisms for polycrystalline silicon defect passivation by hydrogenation in an electron cyclotron resonance plasma,” Appl. Phys. Lett. 67, 3099–3101 (20 November 1995).

    Article  Google Scholar 

  47. I-W Wu, A G Lewis, T-Y Huang, and A Chiang, “Effects of trap-state density reduction by plasma hydrogenation in low-temperature polysilicon TFT,” IEEE Electron Device Lett. 10, 123–125 (March 1989).

    Article  Google Scholar 

  48. S Ostapenko, L Jastrzebski, J. Lagowski, and R K Smeltzer, “Enhanced hydrogenation in polycrystalline silicon thin films using low-temperature ultrasound treatment,” Appl. Phys. Lett. 68, 2873–2875 (13 May 1996).

    Article  Google Scholar 

  49. J I Pankove, R O Wance, and J E Berkeyheiser, “Neutralization of acceptors in silicon by atomic hydrogen,” Appl. Phys. Lett. 45, 1100–1102 (15 November 1984).

    Article  Google Scholar 

  50. B W Liou, Y H Wu, C L Lee, and T F Lei, “Thickness effect on hydrogen plasma treatment on polycrystalline silicon thin films,” Appl. Phys. Lett. 66, 3013–3014 (29 May 1995).

    Article  Google Scholar 

  51. G P Pollack, W F Richardson, S D S Malhi, T Bonifield, H Shichijo, S Banerjee, M Elahy, A H Shah, R Womack, and P K Chatterjee, “Hydrogen passivation of polysilicon MOSFETs from a plasma nitride source,” IEEE Electron Device Lett. EDL-5, 468–470 (November 1984).

    Article  Google Scholar 

  52. E Puppin, “Hydrogen implanted polycrystalline silicon: Resistivity and grain boundary chemistry,” J. Vac. Sci. Technol. B 5, 606–607 (March/April 1987).

    Article  Google Scholar 

  53. V Suntharalingam and S J Fonash, “Electrically reversible depassivation/passivation mechanism in polycrystalline silicon,” Appl. Phys. Lett. 68, 1400–1402 (4 March 1996).

    Article  Google Scholar 

  54. N M Johnson, D K Biegelsen, and M D Moyer “Deuterium passivation of grain-boundary dangling bonds in silicon thin films,” Appl. Phys. Lett. 40, 882–884 (15 May 1982).

    Article  Google Scholar 

  55. R T Young, M C Lu, R D Westbrook, and G E Jellison, Jr, “Effect of lithium on the electrical properties of grain boundaries in silicon,” Appl. Phys. Lett. 38, 628–630 (15 April 1981).

    Article  Google Scholar 

  56. G L Miller and W A Orr, “Lithium doping of polycrystalline silicon,” Appl. Phys. Lett. 37, 1100–1101 (15 December 1980).

    Article  Google Scholar 

  57. T I Kamins, “MOS transistors in beam-recrystallized polysilicon,” Tech. Digest, 1982 International Electron Devices Meeting (San Francisco, December, 1982), paper 16.1, pp. 420–423.

    Google Scholar 

  58. S D Brotherton, D J McCulloch, J B Clegg, and J P Gowers, “Excimerlaser-annealed poly-Si thin-film transistors,” IEEE Trans. Electron Devices 40, 407–413 (February 1993).

    Article  Google Scholar 

  59. Y Morimoto, Y Jinno, K Hirai, H Ogata, T Yamada, and K Yoneda, “Influence of the grain boundaries and intragrain defects on the performance of poly-Si thin film transistors,” J. Electrochem. Soc. 144, 2495–2501 (July 1997).

    Article  Google Scholar 

  60. G K Giust and T W Sigmon, “Performance improvement obtained for thin-film transistors fabricated in prepatterned laser-recrystallized polysilicon,” IEEE Electron Device Lett. 18, 296–298 (June 1997).

    Article  Google Scholar 

  61. G Yaron, L D Hess, and G L Olsen, “Electrical characteristics of laser-annealed polysilicon resistors for device applications,” Proc. Materials Research Society Symposium (Boston, 1979) (ed. C W White and P S Peercy, Academic Press, 1980), pp. 626–631.

    Google Scholar 

  62. Y Wada and S Nishimatsu, “Resistivity lowering limitations of heavily doped polycrystalline silicon,” Denki Kagaku, 47, 118–123 (1979).

    Google Scholar 

  63. S Solmi, M Severi, R Angelucci, L Baldi, and R Bilenchi, “Electrical properties of thermally and laser annealed polycrystalline silicon films heavily doped with arsenic and phosphorus,” J. Electrochem. Soc. 129, 1811–1818 (August 1982).

    Article  Google Scholar 

  64. N Lifschitz, “Solubility of implanted dopants in polysilicon: Phosphorus and arsenic,” J. Electrochem. Soc. 130, 2464–2467 (December 1983).

    Article  Google Scholar 

  65. R B Fair, “Recent advances in implantation and diffusion modeling for the design and process control of bipolar ICs,” in Semiconductor Silicon 1977 (ed. H R Huff and E Sirtl, The Electrochemical Soc, Princeton NJ, 1977), Proc. Vol. 77-2, pp. 968–987.

    Google Scholar 

  66. R B Fair and J C C Tsai, “A quantitative model for the diffusion of phosphorus in silicon and the emitter dip effect,” J. Electrochem. Soc. 124, 1107–1118 (July 1977).

    Article  Google Scholar 

  67. J Murota and T Sawai, “Electrical characteristics of heavily arsenic and phosphorus doped polycrystalline silicon,” J. Appl. Phys. 53, 3702–3708 (May 1982).

    Article  Google Scholar 

  68. T Makino and H Nakamura, “Resistivity changes of heavily-boron-doped CVD-prepared polycrystalline silicon caused by thermal annealing,” Solid-State Electron. 24, 49–55 (January 1981).

    Article  Google Scholar 

  69. G Masetti, D Nobili, and S Solmi, “Profiles of phosphorus predeposited in silicon and carrier concentration in equilibrium with SiP precipitates,” in Semiconductor Silicon 1977 (ed. H R Huff and E Sirtl, The Electrochemical Soc, Princeton NJ, 1977), Proc. Vol. 77-2, pp. 648–657.

    Google Scholar 

  70. A Lietoila, J F Gibbons, and T W Sigmon, “The solid solubility and thermal behavior of metastable concentrations of As in Si,” Appl. Phys. Lett. 36, 765–768 (1 May 1980).

    Article  Google Scholar 

  71. K Suzuki, N Miyata, and K Kawamura, “Resistivity of heavily doped polycrystalline silicon subjected to furnace annealing,” Japan. J. Appl. Phys. 34, 1748–1752 (April 1995).

    Article  Google Scholar 

  72. T I Kamins, “Resistivity of LPCVD polycrystalline-silicon films,” J. Electrochem. Soc. 126, 833–837 (May 1979).

    Article  Google Scholar 

  73. G Kawachi, T Aoyama, K Miyata, Y Ohno, A Mimura, N Konishi, and Y Mochizuki, “Large-area ion doping technique with bucket-type ion source for polycrystalline silicon films,” J. Electrochem. Soc. 137, 3522–3526 (November 1990).

    Article  Google Scholar 

  74. Y Mishima and M Takei, “Non-mass-separated ion shower doping of polycrystalline silicon,” J. Appl. Phys. 75, 4933–4938 (15 May 1994).

    Article  Google Scholar 

  75. R Bashir, S Venkatesan, H Yen, G W Neudeck and E P Kvam, “Doping of polycrystalline silicon films using an arsenic spin-on-glass source and surface smoothness,” J. Vac. Sci. Technol. B, 11, 1903–1905 (September/October 1993).

    Article  Google Scholar 

  76. B S Meyerson, F K LeGoues, T N Nguyen, and D L Harame, “Nonequilibrium boron doping effects in low-temperature epitaxial silicon films,” Appl. Phys. Lett. 50, 113–115 (12 January 1987).

    Article  Google Scholar 

  77. R Chow and R A Powell, “Activation and redistribution of implants in polysi by RTP,” Semiconductor International (May 1985), pp. 108–113.

    Google Scholar 

  78. W Shockley, Electrons and Holes in Semiconductors (John Wiley and Sons, New York 1959), pp. 318–325.

    Google Scholar 

  79. P Panayotatos, E S Yang, and W Hwang, “Determination of the grain boundary recombination velocity in polycrystalline silicon as a function of illumination from photoconductance measurements,” Solid-State Electron. 25, 417–422 (May 1982).

    Article  Google Scholar 

  80. H C Card and E Yang, “Electronic processes at grain boundaries in polycrystalline semiconductors under optical illumination,” IEEE Trans. Electron Devices, ED-24, 397–402 (April 1977).

    Article  Google Scholar 

  81. M A Green, “Bounds upon grain boundary effects in minority carrier semiconductor devices: A rigorous “perturbation” approach with application to silicon solar cells,” J. Appl. Phys. 80, 1515–1521 (1 August 1996).

    Article  Google Scholar 

  82. J E Mahan, “Threshold and memory switching in polycrystalline silicon,” Appl. Phys. Lett. 41, 479–481 (1 September 1982).

    Article  Google Scholar 

  83. P T Landsberg and M S Abrahams, “Effects of surface states and of excitation on barrier heights in a simple model of a grain boundary or a surface,” J. Appl. Phys. 55, 4284–4293 (15 June 1984).

    Article  Google Scholar 

  84. P Kenyon and H Dressel, “Negative resistance switching in near-perfect crystalline silicon film resistors,” J. Vac. Sci. Technol. A 2, 1486–1490 (October-December 1984).

    Article  Google Scholar 

  85. C-Y Lu, N C-C Lu, and C-C Shih, “Resistance switching characteristics in polycrystalline silicon film resistors,” J. Electrochem. Soc. 132, 1193–1196 (May 1985).

    Article  Google Scholar 

  86. C H Seager and G E Pike, “Anomalous low-frequency grain-boundary capacitance in silicon,” Appl. Phys. Lett. 37, 747–749 (15 October 1980).

    Article  Google Scholar 

  87. M Darwish and K Board, “Theory of switching in polysilicon n-p + structures,” Solid-State Electron. 27, 775–783 (August/September 1984).

    Article  Google Scholar 

  88. Y Amemiya, T Ono, and K Kato, “Electrical trimming of heavily doped polycrystalline silicon resistors,” IEEE Trans. Electron Devices, ED-26, 1738–1742 (November 1979).

    Article  Google Scholar 

  89. M Tanimoto, J Murota, Y Ohmori, and N Ieda, “A Novel MOS PROM using a highly resistive poly-Si resistor,” IEEE Trans. Electron Devices, ED-27, 517–520, (March 1980).

    Article  Google Scholar 

  90. O-H Kim and C-K Kim, “Effects of high-current pulses on polycrystalline silicon diode with n-type region heavily doped with both boron and phosphorus,” J. Appl. Phys. 53, 5359–5360 (July 1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kamins, T. (1998). Electrical Properties. In: Polycrystalline Silicon for Integrated Circuits and Displays. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5577-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5577-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7551-7

  • Online ISBN: 978-1-4615-5577-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics