Skip to main content

Fungal Degradation of Azo Dyes and Its Relationship to their Structure

  • Chapter
Biotechnology in the Sustainable Environment

Part of the book series: Environmental Science Research ((ESRH,volume 54))

  • 364 Accesses

Abstract

Organic chemists add approximately 200,000 new chemicals per year to the millions already used by the USA, Japan, and the advanced industrial nations of Europe. About 100,000 of the chemicals in use are synthetic dyes (Meyer, 1981). Azo dyes are the most numerous and widely manufactured of the synthetic dyes, having a great variety of uses ranging from food dyes to gasoline additives (solvent dyes). Highly water soluble azo dyes are widely used in the fiber dyeing industry, and azo pigments that are highly insoluble in water and in organic solvents are used in paint products (Hunger et al., 1985). The characteristic feature of azo dyes is the presence of one or more chromophoric azo group(s) R-N=N-R, where at least one nitrogen atom is linked to a carbon atom belonging to an aromatic carbocycle.

Publication no. 96502 of the Idaho Agricultural Experiment Station

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Archibald, F. A., 1992. New assay for lignin-type peroxidases employing the dye Azure B, Appl. Environ. Microbiol. 58:3110–3116.

    CAS  Google Scholar 

  • Bonnarme, P., Perez, J., and Jeffries, T. W., 1991. Regulation of ligninase production of white-rot fungi, in: Enzymes in Biomass Conversion (G. F. Leatham and M. E. Himmel, eds.), American Chemical Society, Washington, D.C., pp. 200–208.

    Chapter  Google Scholar 

  • Brock B. J., Rieble, S., and Gold M. H., 1995. Purification and characterization of a 1,4-benzoquinone reductase from basidiomycete Phanerochaete chrysosporium, Appl. Environ. Microbiol 61:3076–3081.

    CAS  Google Scholar 

  • Brown, D., and Hamburger, B., 1987. The degradation of dyestuff: Part 3, Investigation of their ultimate degrad-ability, Chemosphere 16:1539–1553.

    Article  CAS  Google Scholar 

  • Brown, D., and Laboureur, P., 1983. The degradation of dyestuff: Part 1, Primary biodegradation under anaerobic conditions, Chemosphere 12:397–408.

    Article  CAS  Google Scholar 

  • Brown, M. A., and DeVito S. C., 1993. Predicting azo dye toxicity, Crit. Rev. Environ. Sci. Technol. 23:249–324.

    Article  CAS  Google Scholar 

  • Bumpus, J. A., and Brock, B. J., 1988. Biodegradation of Crystal Violet by the white-rot fungus Phanerochaete chrysosporium, Appl. Environ. Microbiol. 54: 1140–11

    Google Scholar 

  • Capalash, N., and Shrama, P., 1992. Biodegradation of textile azo-dyes by Phanerochaete chrysosporium, World J. Microbiol. Biotechnol. 8:309–312.

    Article  CAS  Google Scholar 

  • Chahal, D. S., Kluepfel, D., Morosoli, R., Shereck, F., Laplante, S., and Rouleau, D., 1995. Use of dyes in solid medium for screening ligninolytic activity of selective Actinomycetes, Appl. Biochem. Biotechnol. 51:137–144.

    Article  Google Scholar 

  • Chet, I., Trojanowski, J., and Huttermann, A., 1985. Decolorization of the Poly B-411 and its correlation with lignin degradation by fungi, Microbios. Lett. 29:37–43.

    Article  CAS  Google Scholar 

  • Chivukula, M, and Renganathan, V., 1995. Phenolic azo dye oxidation by laccase from Pyricularia oryze, Appl. Environ. Microbiol. 61:4374–4377.

    CAS  Google Scholar 

  • Chivukula, M., Spadaro, J. T., and Renganathan V., 1995. Lignin peroxidase-catalyzed oxidation of sulfonated azo dyes generates novel sulfophenyl hydroperoxides, Biochemistry, 34:7765–7765.

    Article  CAS  Google Scholar 

  • Chung K-T., 1983. The significance of azo reduction in the mutagenesis and carcinogenesis of azo dyes, Mutation Res. 114:269–281.

    Article  CAS  Google Scholar 

  • Claxton, L. A., Walsh, D. B., Esancy, J. F., and Freeman, H. S., 1990. Structure and activity analysis of azo dyes and related compounds, in: Mutation and the Environment, part B. Wiley-Liss, Inc., New York, pp. 11–22.

    Google Scholar 

  • Cripps, C., Bumpus, J. A., and Aust. S. D., 1990. Biodegradation of azo and heterocyclic dyes by Phanerochaete chysosporium, Appl. Environ. Microbiol. 56:1114–1118.

    CAS  Google Scholar 

  • Daniel, G., 1994. Use of electron microscopy for aiding our understanding of wood biodegradation, FEMS Microbiol. Rev. 13:199–223.

    Article  CAS  Google Scholar 

  • Dawson, D. J., 1981. Polymeric dyes, Aldrichimica Acta 14:23–29.

    CAS  Google Scholar 

  • De Jong, E., De Vries, F. P., Field, J. A., Van Der Zwan, R. P., and De Bont, J. A. M., 1992. Isolation and screening of basidiomycetes with high peroxidase activity, Mycol. Res. 96:1098–1104.

    Article  Google Scholar 

  • Freitag, M., and Morrell, J. J., 1992. Decolorization of the polymeric dye Poly R-487 by wood-inhabiting fungi, Can. J. Microbiol. 38:811–822.

    Article  CAS  Google Scholar 

  • Gerber, N. C., and Ortiz de Montellano, P. R., 1995. Neuronal nitric oxide synthase. Expression in Escherichia coli, irreversible inhibition by phenyldiazene, and active site topology, J Biol. Chem. 270:17791–17796.

    Article  CAS  Google Scholar 

  • Glenn, J. K. and Gold, M. H., 1983. Decolorization of several polymeric dyes by the lignin degrading basidiomycete Phanerochaete chrysosporium, Appl. Environ. Microbiol. 45:1741–1747.

    CAS  Google Scholar 

  • Gogna, E., Vohra, R., and Sharma, P., 1991. Biodegradation of Rose Bengal by Phanerochaete chrysosporium, Lett. Appl. Microbiol. 14:58–60.

    Article  Google Scholar 

  • Gold, M. H., and Alic, M., 1993. Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microb. Rev. 57:605–622.

    CAS  Google Scholar 

  • Goszczynski, S., Paszczynski, A., Pasti-Grigsby, M. B., Crawford, R. L., and Crawford, D. L., 1994. New pathway for degradation of sulfonated azo dyes by microbial peroxidases of Phanerochaete chrysosporium and Streptomyces chromofuscus, J. Bacteriol. 176:1339–1347.

    CAS  Google Scholar 

  • Govindaswami, M., Schmidt, T. M., White, D.C., and Loper, J. C., 1993. Phylogenetic analysis of a bacterial aerobic degrader of azo dyes, J. Bacteriol. 175:6062–6066.

    CAS  Google Scholar 

  • Hammel, K., 1995. Organopollutant degradation by ligninolytic fungi, in: Microbial Transformation and Degradation of Toxic Organic Chemicals. (L. Y. Young and C. E. Cerniglia, eds.), John Wiley & Sons, Inc., New York, pp. 331–346.

    Google Scholar 

  • Hartwell, J. L., and Fieser, F. L., 1943. Coupling of o-Tolidine and Chicago Acid, in: Organic Synthesis, Collective Vol 2, A Revised Edition of Annual Volumes 10–19 (A. H. Blatt, ed.), John Wiley & Sons, New York, pp. 145–149.

    Google Scholar 

  • Haug, W., Schmidt, A., Nortemann, B., Hempel, D., Stolz, A., and Knackmuss, H., 1991. Mineralization of the sulfonated azo dye Mordant Yellow 3 by a 6-aminonaphthalene-2-sulfonate-degrading bacterial consortium, Appl. Environ. Microbiol. 57:3144–3149.

    CAS  Google Scholar 

  • Hoffman, R. V. and Kumar, A., 1984. Oxidation of hydrazine derivatives with arylsulfonyl peroxides, J. Org. Chem. 49:4014–4017.

    Article  CAS  Google Scholar 

  • Hunger, K. Mischke, P. Rieper, W. and Raue, R., 1985. Azo dyes, in: Ulmann’ s Encyclopedia of Industrial Chemistry, 5th ed. (F. T. Campbell, R. Pfefferkorn, and J. F. Rounsaville, eds.), VCH Publishers, Deerfield Beach, Florida, pp. 245–323.

    Google Scholar 

  • Joachim, F., Burrell, A., and Anderson, J., 1985. Mutagenicity of azo dyes in the Salmonella/microsome assay using in vitro and in vivo activation, Mutation Res. 156:131–138.

    Article  CAS  Google Scholar 

  • Kirby, N., McMullan, G., and Marchant, R., 1995. Decolourisation of an artificial textile effluent by Phanerochaete chrysosporium, Biotechnol. Lett. 17:761–764.

    Article  CAS  Google Scholar 

  • Kling, S. H., and Neto, J. S. A., 1991. Oxidation of Methylene Blue by crude lignin peroxidase from P. chrysosporium, J. Biotechnol. 21: 295–3

    Article  CAS  Google Scholar 

  • Kropf, H., Aryl-hydroperoxide, alkyl-aryl-peroxide, diaryl-peroxide, 1988. in: Methoden der Organischen Chemie (Houben-Weyl) Volume El3, (H. Kropf, ed.), Georg Thieme Verlag, Stuttgart, pp. 762–763.

    Google Scholar 

  • Kulla, H. G., 1981. Aerobic bacterial degradation of azo dyes, in: Microbial Degradation of Xenobiotics and Recalcitrant Compounds (T. Leisinger, A. M. Cook, R. Hootter, and R. Nuesch, eds.). Academic Press, Inc., Ltd., London, pp. 387–389.

    Google Scholar 

  • Kulla, H. G., Klausener, F., Meyer, U., Ludeke, B., and Leisinger, T., 1983. Interference of aromatic sulfo groups in microbial degradation of azo dyes Orange I and Orange II, Arch. Microbiol. 135:1–7

    Article  CAS  Google Scholar 

  • Kulla, H. G., Krieg, R., Zimmermann, T., and Leisinger, T., 1984. Biodegradation of xenobiotics. Experimental evaluation of azo dye-degrading bacteria, in: Current Perspectives in Microbial Ecology (M. J. Klug and C. A. Reddy, eds.), American Society for Microbiology, Washington DC, pp. 663–667.

    Google Scholar 

  • Lin, G. H. Y and Solodar W. E., 1988. Structure activity relationship studies on the mutagenicity of some azo dyes in the Salmonella/mcrosome assay, Mutagenesis 3:311–315.

    Article  CAS  Google Scholar 

  • Lyons, C. D., Katz, S., and Bartha, R., 1984. Mechanisms and pathways of aniline and elimination from aquatic environment, Appl. Environ. Microbiol. 48:491–196.

    CAS  Google Scholar 

  • Mannen, S., and Itano, H. A., 1973. Stoichiometry of the oxidation of arylhydrazines with ferricyanide. Quantitative measurements of absorption spectra of aryldiazenes, Tetrahedron 29:3497–3502.

    Article  CAS  Google Scholar 

  • Meyer, U., 1981. Biodegradation of synthetic organic colorants, in: Microbial Degradation of Xenobiotics and Recalcitrant Compounds (T. Leisinger, R. Hutter, A. M. Cook, and J. Nuesch, eds.). Academic Press, London, pp. 387–399.

    Google Scholar 

  • Muralikrishna, C, and Renganathan, V, 1993. Peroxidase-catalysed desulfonation of 3,5-dimethyl-4-hydroxy and 3,5-dimethyl-4-aminobenzenesulfonic acid, Biochem. Biophys. Res. Commun. 197:798–804.

    Article  CAS  Google Scholar 

  • Newmyer S. L. and Ortiz de Montellano, P. R., Horseradish peroxidase His-42-Ala, His-42 — Valine, and Phe-41-Ala mutants. Histidine catalysis and control of substrate access to the heme iron, 1995. J. Biol. Chem. 270:19430–19438.

    Article  CAS  Google Scholar 

  • Nicholson, J., and Cohen, S. G., 1966. Phenyldiimide. III. Ferric ion catalyzed formation of free radicals in heterolysis of azo compounds, J. Am. Chem. Soc. 86:2247–2252.

    Article  Google Scholar 

  • Ollikka, P., Alhonmaki, K., Leppanen, V.-M., Glumoff, T., Raijola, T., and Suominen, I., 1993. Decolorization of azo, triphenyl methane, heterocyclic, and polymeric dyes by lignin peroxidase isoenzymes from Phanerochaete chrysosporium, Appl. Environ. Microbiol. 59:4010–4016.

    CAS  Google Scholar 

  • Pasti, M. B., Hagen, S. R., Goszczynski, S., Paszczynski, A., Crawford, R. L., Crawford, D. L., 1991. The influence of guaiacol and syringyl groups in azo dyes on their degradation by lignocellulolytic Streptomyces spp., in: Abstracts of the International Symposium on Applied Biotechnology for Tree Culture, Protection, and Utilization, Battelle Press, Columbus, Ohio, pp. 119–120.

    Google Scholar 

  • Pasti, M. B., Paszczynski, A., Goszczynski, S., Crawford, D. L., and Crawford, R. L., 1992. Influence of aromatic substitution patterns on azo dye degradability by Streptomyces spp. and Phanerochaete chrysosporium, Appl. Environ. Microbiol. 58: 3605–36

    Google Scholar 

  • Pasti-Grigsby, M. B., Paszczynski, A., Goszczynski, S., Crawford, D. L., Crawford, R. L. 1992. Influence of aromatic substitution patterns on azo dye degradability by Streptomyces spp. and Phanerochaete chrysosporium, Appl. Environ. Microbiol., 58, 3605–3613.

    CAS  Google Scholar 

  • Pasti-Grigsby, M. B., Paszczynski, A., Goszczynski, S., Crawford, D. L, and Crawford, R. L., 1994a. Biodegradation of novel azo dyes, in: Applied Biotechnology for Site Remediation (R. E. Hinchee, D. B. Anderson, F. B. Metting, Jr., G. D. Sayles, eds.), Lewis Publishers, Boca Raton, Florida, pp. 384–390.

    Google Scholar 

  • Pasti-Grigsby, M. B., Paszczynski, A., Goszczynski, S., Crawford D. L., and Crawford, R. L. 1994b. Use of dyes in assaying Phanerochaete chrysosporium Mn(II)-peroxidase and ligninase, Proc. Inst. Mol Agric. Gen. Eng. (IMAGE) 1, 1–12. http://www.uidaho.edu/~crawford/image.html

    Google Scholar 

  • Paszczynski, A., and Crawford, R. L, 1991. Degradation of azo compounds by ligninase from Phanerochaete chrysosporium: involvement of veratryl alcohol, Biochem. Biophys. Res. Commun. 178: 1056–106

    Article  CAS  Google Scholar 

  • Paszczynski, A., Pasti, M. B., Goszczynski, S., Crawford, D. L., Crawford. R. L., 1991a. Designing biodegradability: lessons from lignin, in: Abstracts of the International Symposium on Applied Biotechnology for Tree Culture, Protection, and Utilization. Battelle Press, Columbus, Ohio, pp. 73–78.

    Google Scholar 

  • Paszczynski, A., Pasti, M. B., Goszczynski, S., Crawford, D. L., Crawford, R. L., 1991b. New approach to improve degradation of recalcitrant azo dyes by Streptomyces spp. and Phanerochaete chrysosporium. Enzyme Microb. Technol. 13:378–384.

    Article  CAS  Google Scholar 

  • Paszczynski A., and Crawford, R. L., 1995. Potential for bioremediation of xenobiotic compounds by the white-rot fungus Phanerochaete chrysosporium, Biotechnol. Prog. 11:368–379.

    Article  CAS  Google Scholar 

  • Paszczynski, A., Goszczynski, S., Crawford, R. L., and Crawford, D. L., 1995. Interaction of peroxidases with dyes and plastics, in: Microbial Processes for Bioremediation (R. E. Hinchee, F. J. Brockman, and C. M. Vogel, eds.), Battelle Press, Columbus, Ohio, pp. 187–195.

    Google Scholar 

  • Paszczynski, A., Goszczynski, S., Crawford, R. L., Crawford, D. L., and Pasti, M. B., 1996; Biodegradable azo dyes, United States Patent 5,486,214.

    Google Scholar 

  • Platt, M. W., Hadar, Y., and Chet, I., 1985. The decolorization of the polymeric dye Poly-blue (polyvinylamine sul-fonate-anthroquinone) by lignin degrading fungi, Appl. Microbiol. Biotechnol. 21:394–396.

    Article  CAS  Google Scholar 

  • Raag, R., Swanson, B. A., Poulos, T. L., and Ortiz de Montellano, P. R., 1990. Formation, crystal structure, and rearrangement of a cytochrome P—450cam iron-phenyl complex, Biochemistry 29:8119–8126.

    Article  CAS  Google Scholar 

  • Reddy, C. A., 1995. The potential for white-rot fungi in the treatment of pollutants, Curr. Opin. Biotechnol. 6:320–328.

    Article  CAS  Google Scholar 

  • Reid, T., Morton K. C., Wang C. Y., and King, C. M., 1984. Mutagenicity of azo dyes following metabolism by different reductive/oxidative systems. Environ. Mutagenesis 6:705–717.

    Article  CAS  Google Scholar 

  • Rieble, S., Joshi, D. K., and Gold, M. H., 1994. Purification and characterization of a 1,2,4-trihydroxybenzene 1,2-dioxygenase from the basidiomycete Phanerochaete chrysosporium, J. Bacteriol. 176:4838–4844.

    CAS  Google Scholar 

  • Rothkopf, G. S. and Bartha, R., 1984. Structure-biodegradability correlations among xenobiotics industrial amines, JAOCS 61:977–980.

    Article  CAS  Google Scholar 

  • Sarnaik, S. and Kanekar, P., 1995. Bioremediation of colour of Methyl Violet and phenol from a dye-industry waste effluent using Pseudomonas spp. isolated from factory soil, J. Appl. Bacteriol. 79: 459–4

    Article  CAS  Google Scholar 

  • Sayadi, S. and Ellouz, R., 1995. Role of lignin peroxidase and manganese peroxidase from Phanerochaete chrysosporium in decolorization of olive mill wastewater, Appl. Environ. Microbiol. 61:1098–1103.

    CAS  Google Scholar 

  • Schiephake, K., Lonergan, G. T., Jones, C. L., and Mainwaring, D. E., 1993. Decolorization of pigment plant effluent by Pycnoporus cinnabarinus in packed-bed reactor, Biotechnol. Lett. 15:1185–1188.

    Article  Google Scholar 

  • Shahin, N. M., 1989. Evaluation of the mutagenicity of azo dyes in Salmonella typhimurium: a study of structure activity relationship, Mutagenesis 4:115–125.

    Article  CAS  Google Scholar 

  • Spadaro, J. T., Gold, M. H., and Renganathan, V, 1992. Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporium, Appl. Environ. Microbiol. 58: 2397–24

    CAS  Google Scholar 

  • Suehiro, T., 1988. Behavior of aryldiazenyl radicals in solution. Rev. Chem. Intermed. 10:101–137.

    Article  CAS  Google Scholar 

  • Swanson, B. A., Dutton, D. R., Lunetta, J. M., Yang, C. S., and Ortiz de Montellano, P. R., 1991. The active sites of cytochromes P450 Ial, IIB1, IIB2, and IIE1. Topological analysis by in situ rearrangement of phenyl-iron complexes, J. Biol. Chem. 266:9258–19264.

    Google Scholar 

  • Tour, U., Winterhalter, K., and Fiechter, A., 1995. Enzymes of white-rot fungi involved in lignin degradation and ecological determinations for wood decay. J. Biotechnol. 41:1–17.

    Article  Google Scholar 

  • Ulmer, D. C., Leisola, M. S. A., and Fiechter, A., 1984. Possible induction of the ligninolytic system of Phanerochaete chrysosporium, J. Biotechnol. 1:13–24.

    Article  CAS  Google Scholar 

  • Vyas, B. R. M., and Molitoris, H. P., 1995. Involvement of an extracellular H2O2-dependent ligninolytic activity of the white rot fungus Pleurotus ostreatus in the decolorization of Remazol Brilliant Blue R, Appl. Environ. Microbiol. 61:3919–3927.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Paszczynski, A., Goszczynski, S., Crawford, R.L. (1997). Fungal Degradation of Azo Dyes and Its Relationship to their Structure. In: Sayler, G.S., Sanseverino, J., Davis, K.L. (eds) Biotechnology in the Sustainable Environment. Environmental Science Research, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5395-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5395-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7463-3

  • Online ISBN: 978-1-4615-5395-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics