Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 213))

  • 112 Accesses

Abstract

Patients with normal coronary arteries who experience chest pain have constituted an enigma for many years. As some of these patients have ischemia-like ST segment depression in response to exercise stress testing attempts have been made to ascertain whether the syndrome has an ischemic etiology. Measurement of cardiac metabolite exchange in response to pacing stress is one of the methods used to investigate ischemia in these patients. Ischemia increases the myocardial carbohydrate-lipid utilization ratio and the change in cardiac lactate exchange from uptake to output, due to enhanced anaerobic glycolysis, has been the most frequently used metabolic index of ischemia. Despite that initial studies had demonstrated cardiac ischemia in patients with chest pain and normal coronary arteries, using metabolic markers, abnormal lactate findings in these patients have declined in recent studies. Thus, the findings of myocardial lactate production during stress in up to 40% of patients in the early studies have almost “vanished” in recent studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Opie LH. Fuels: carbohydrates and lipids. In: Opie LH, ed. The heart: Physiology and metabolism. New York: Raven Press, 1991:208–46.

    Google Scholar 

  2. Lassers BW, Wahlqvist ML, Kaijser L, Carlsson LA. Relationship in man between plasma free fatty acids and myocardial metabolism of carbohydrate substrates. Lancet 1971;II:448–50.

    Article  Google Scholar 

  3. Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Ann Rev Physiol 1974;36:413–59.

    Article  CAS  Google Scholar 

  4. Opie LH. Role of carnitine in fatty acid metabolism of normal and ischemic myocardium. Am Heart J 1979;97:375–87.

    Article  PubMed  CAS  Google Scholar 

  5. Randle PJ, Tubbs PK. Carbohydrate and fatty acid metabolism. In: Berne R, Sperelakis N, Geiger SR, eds. Handbook of Physiology. The Cardiovascular System. Vol. I. The Heart. American Physiological Society, Bethesda, 1979:805–44.

    Google Scholar 

  6. Parmeggiani A, Bowman RH. Regulation of phosphofructokinase activity by citrate in normal and diabetic muscle. Biochem Biophys Res Commun 1963;12:268–73.

    Article  PubMed  CAS  Google Scholar 

  7. Nielsen TT, Henningsen P, Bagger JP, Thomsen PEB, Eyjolfsson K. Myocardial citrate metabolism in control subjects and patients with coronary artery disease. Scand J Clin Lab Invest 1980;40: 575–80.

    Article  PubMed  CAS  Google Scholar 

  8. Kerbey AL, Randle PJ, Cooper RH et al. Regulation of pyruvate dehydrogenase in rat heart. Biochem J 1976;154:327–48.

    PubMed  CAS  Google Scholar 

  9. Vary TC, Reibel DK, Neely JR. Control of energy metabolism of heart muscle. Ann Rev Physiol 1981;43:419–30.

    Article  CAS  Google Scholar 

  10. Safer B. The metabolic significance of the malate-aspartate cycle in heart. Circ Res 1975;37:527–33.

    Article  PubMed  CAS  Google Scholar 

  11. Taegtmeyer H, Peterson MB, Ragavan VV, Ferguson AG, Lesch M. De novo alanine synthesis in isolated oxygen deprived rabbit myocardium. J Biochem Chem 1977;252:5010–18.

    CAS  Google Scholar 

  12. Taegtmeyer H, Russell R. glutamate metabolism in rabbit heart: augmentation by ischemia and inhibition with acetoacetate. J Appl Cardiol 1987;2:231–49.

    CAS  Google Scholar 

  13. Pisarenko OI, Lepilin MG, Ivanov VE. Cardiac metabolism and performance during L-glutamic acid infusion in postoperative cardiac failure. Clin Sci 1986;70:7–12.

    PubMed  CAS  Google Scholar 

  14. Thomassen AR, Nielsen TT, Bagger JP, Henningsen P. Myocardial exchanges of glutamate, alanine and citrate in controls and patients with coronary artery disease. Clin Sci 1983;64:33–40.

    PubMed  CAS  Google Scholar 

  15. Thomassen AR, Nielsen TT, Bagger JP, Thuesen L. Myocardial glutamate and alanine exchanges related to carbohydrate metabolism in patients with normal and stenotic coronary arteries. Clin Physiol 1984;4:425–34.

    Article  PubMed  CAS  Google Scholar 

  16. Ferrannini E. The theoretical basis of indirect calorimetry: a review. Metabolism 1988;37:287–301.

    Article  PubMed  CAS  Google Scholar 

  17. Thomassen A, Bagger JP, Nielsen TT, Henningsen P. Altered global myocardial substrate preference at rest and during pacing in coronary artery disease with stable angina pectoris. Am J Cardiol 1988;62:686–93.

    Article  PubMed  CAS  Google Scholar 

  18. Kobayashi K, Neely JR. Control of maximum rates of glycolysis in rat cardiac muscle. Circ Res 1979;44:166–75.

    Article  PubMed  CAS  Google Scholar 

  19. Mudge GH, Mills RM, Taegtmeyer H, Gorlin R, Lesch M. Alterations of myocardial amino acid metabolism in chronic ischemic heart disease. J Clin Invest 1976;58:1185–92.

    Article  PubMed  CAS  Google Scholar 

  20. Knapp WH, Helus F, Ostertag H, Tillmanns H, Kubler W. Uptake and turnover of L-(N-13)-glutamate in the normal human heart and in patients with coronary artery disease. Eur J Nuc Med 1982;7:211–15.

    CAS  Google Scholar 

  21. Neely JR, Feuvray D. Metabolic products and myocardial ischemia. Am J Pathol 1981;102:282–91.

    PubMed  CAS  Google Scholar 

  22. Tischler ME, Goldberg AL. Production of alanine and glutamine by atrial muscle from fed and fasted rats. Am J Physiol 1980;238: E487–93.

    PubMed  CAS  Google Scholar 

  23. Bagger JP Nielsen TT, Henningsen P, Thomsen PEB, Eyjolfsson K. Myocardial release of citrate and lactate during atrial-pacing induced angina pectoris. Scand J Clin Lab Invest 1981;41:431–39.

    Article  Google Scholar 

  24. Camici P, Araujo LI, Spinks T et al. Prolonged metabolic recovery allows late identification of ischemia in the absence of electrocardiographic and perfusion changes in patients with exertional angina. Can J Cardiol 1986;Suppl A:131–35.

    Google Scholar 

  25. Segal LD, Mason DT. Effect of exercise and conditioning on rat heart glycogen and glycogen synthase. J App1 Physiol 1978;44:183–89.

    Google Scholar 

  26. Bagger JP. Effects of antianginal drugs on myocardial energy metabolism in coronary artery disease. Pharmacol Toxicol 1990;66(Suppl IV):1–31.

    Article  PubMed  CAS  Google Scholar 

  27. Wiener L, P Walinsky, Kasparian H et al. Therapeutic implications of myocardial lactate metabolism in patients considered candidates for emergency myocardial revascularization. J Thor Cardiovasc Surg 1978;75:612–20.

    CAS  Google Scholar 

  28. Arbogast R, Bourassa MG. Myocardial function during atrial pacing in patients with angina pectoris and normal coronary angiograms. Am J Cardiol 1973;32:257–63.

    Article  PubMed  CAS  Google Scholar 

  29. Bagger JP, Nielsen TT, Thomassen AT. Reproducibility of coronary haemodynamics and cardiac metabolism during pacing-induced angina pectoris. Clin Physiol 1985;5:359–70.

    Article  PubMed  CAS  Google Scholar 

  30. Bagger JP, Nielsen TT, Henningsen P. Increased coronary sinus lactate concentration during pacing induced angina pectoris after clinical improvement by glyceryl trinitrate. Br Heart J 1983;50:483–90.

    Article  PubMed  CAS  Google Scholar 

  31. Kemp HG, Vokonas PS, Cohn PF, Gorlin R. The anginal syndrome associated with normal coronary arteriograms. Am J Med 1973;54:735–742.

    Article  PubMed  Google Scholar 

  32. Bemiler CR, Pepine CJ, Rogers AK. Long-term observations in patients with angina and normal coronary arteriograms. Circulation 1973;47:36–43.

    Article  Google Scholar 

  33. Boudoulas H, Cobb TC, Leighton RF, Wilt SM. Myocardial lactate production in patients with angina-like chest pain and angiographically normal coronary arteries and left ventricle. Am J Cardiol 1974;34:501–5.

    Article  PubMed  CAS  Google Scholar 

  34. Mammohansingh P, Parker JO. Angina pectoris with normal coronary arteriograms: Hemodynamic and metabolic response to atrial pacing. Am Heart J 1975;90:555–61.

    Article  PubMed  CAS  Google Scholar 

  35. Opherk D, Zebe H, Weihe E et al. Reduced coronary dilatory capacity and ultrastructural changes of the myocardium in patients with angina pectoris but normal coronary arteriograms. Circulation 1981;63:817–25.

    Article  PubMed  CAS  Google Scholar 

  36. Greenberg MA, Grose RM, Neuburger N, Silverman R, Strain JE, Cohen MV. Impaired coronary vasodilator responsiveness as a cause of lactate production during pacing-induced ischemia in patients with angina pectoris and normal coronary arteries. JACC 1987;9:743–51.

    PubMed  CAS  Google Scholar 

  37. Papanicolaou MN, Califf RM, Hlatky MA et al. Prognostic implications of angiographically normal and insignificantly narrowed coronary arteries. Am J Cardiol 1986;58:1181–87.

    Article  PubMed  CAS  Google Scholar 

  38. Camici PG, Marraccini P, Lorenzoni R et al. Coronary hemodynamics and myocardial metabolism in patients with syndrome X: Response to pacing stress. JACC 1991;17:1461–70.

    PubMed  CAS  Google Scholar 

  39. Botker HE, Sonne HS, Bagger JP, Nielsen TT. Impact of impaired coronary flow reserve and insulin resistance on myocardial energy metabolism in patients with syndrome X. Am J Cardiol 1997;79:1615–22.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bagger, J.P. (1999). Myocardial Metabolism in Cardiac Syndrome X. In: Kaski, J.C. (eds) Chest Pain with Normal Coronary Angiograms: Pathogenesis, Diagnosis and Management. Developments in Cardiovascular Medicine, vol 213. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5181-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5181-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7360-5

  • Online ISBN: 978-1-4615-5181-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics