Skip to main content

Low-Drive Current Amplifiers

  • Chapter
CMOS Current Amplifiers

Abstract

The chapter deals with design aspects of low-drive current amplifiers. These amplifiers find applications in on-chip environments, where (load) resistances are strictly controlled by the designer. Therefore, they are not required to deliver output currents higher than the quiescent current of the output branches. As we will show, this class of amplifiers has the strongest potential in terms of low-voltage and high speed capability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. C. Temes, W. H. Ki, “Fast CMOS Current Gain Amplifier and Buffer Stage,” Electronics Letters, Vol.23, pp. 696–697, 1987.

    Article  Google Scholar 

  2. Z. Wang, W. Guggenbühl, “Adjustable Bidirectional MOS Current Mirror/Amplifier,” Electronics Letters, Vol.25, No. 10, pp. 673–675, May 1989.

    Article  Google Scholar 

  3. E. A. M. Klumperink, H. J. Janssen, “Complementary CMOS Current Gain Cell,” Electronics Letters, Vol.27, pp. 38–40, 1991.

    Article  Google Scholar 

  4. Z. Wang, “Wideband Class AB (Push-Pull) Current Amplifier in CMOS Technology,” Electronics Letters, Vol.26, No. 3, pp. 543–545, Apr. 1990.

    Article  Google Scholar 

  5. A. Sedra, K. Smith, Microelectronic Circuits, CBS College Publishing, 1987.

    Google Scholar 

  6. A. Sedra, K. Smith, “A Second-Generation Current Conveyor and Its Applications”, IEEE Trans. on Circuit Theory, CT-17, pp. 132–133, Feb. 1970.

    Article  Google Scholar 

  7. A. Sedra, G. Roberts, F. Gohh, “The Current Conveyor: History, Progress and New Results,” IEE Proc. Part G, Vol.137, No.2, pp.78–87, Apr. 1990.

    Google Scholar 

  8. P. Aronhime, “Transfer-Function Synthesis Using a Current Conveyor,” IEEE Trans. on Circuits and Systems, pp.312–313, Mar. 1974.

    Google Scholar 

  9. A. Fabre, M. Alami, “Insensitive Current-Mode Bandpass Implementations-Based Nonideal Gyrators,” IEEE Trans. on Circuits and Systems — part. I, Vol. 39, No. 2, pp. 152–155, Feb. 1992.

    Article  Google Scholar 

  10. G. Roberts, A. Sedra, “A General Class of Current Amplifier-Based Biquadratic Filter Circuits,” IEEE Trans. on Circuits and Systems —part. I, Vol. 39, No. 4, pp. 257–263, Apr. 1992.

    Article  MATH  Google Scholar 

  11. C. Chang, “Universal Active Current Filter with Single Input and Three Outputs Using CCIIs,” Electronics Letters, Vol. 29, No. 22, pp. 1932–1933, Oct. 1993.

    Article  Google Scholar 

  12. A. Fabre, F. Dayoub, L. Duruisseau, M. Kamoun, “High Input Impedance Insensitive Second-Order Filters Implemented from Current Conveyors,” IEEE Trans. on Circuits and Systems — part I, Vol. 41, No. 12, pp. 918–921, Dec. 1994.

    Article  Google Scholar 

  13. R. Nandi, “Insensitive Current Mode Realization of Third-Order Butterworth Characteristics Using Current Conveyors,” IEEE Trans. on Circuits and Systems — part I, Vol. 41, No. 12, pp. 925–927, Dec. 1994.

    Article  MathSciNet  Google Scholar 

  14. P. Mohan, “New Current-Mode Biquad on Friend-Deliyannis Active RC Biquad,” IEEE Trans. on Circuits and Systems — part II, Vol. 42, No. 3, pp. 225–228, Mar. 1995.

    Article  MathSciNet  Google Scholar 

  15. A. Fabre, M. Alami, “Universal Current Mode Biquad Implemented from Two Second Generation Current Conveyors,” IEEE Trans. on Circuits and Systems-part I, Vol. 42, No. 7, pp. 383–385, July 1995.

    Article  Google Scholar 

  16. S. Liu, J. Chen, Y. Hwang, “New Current Mode Biquad Filters using Current Followers,” IEEE Trans. on Circuits and Systems — part I, Vol. 42, No. 7, pp. 380–383, July 1995.

    Article  Google Scholar 

  17. A. Fabre, H. Amrani, O. Saaid, “Current-Mode Band-Pass Filters with Q-Magnification,” IEEE Trans. on Circuits and Systems — part II, Vol. 43, No. 12, pp. 839–842, Dec. 1996.

    Article  Google Scholar 

  18. M. Abuelma’atti, A. Al-Ghumaiz, “Novel CCI-Based Single-Element-Controlled Oscillators Employing Grounded Resistors and Capacitors,” IEEE Trans. on Circuits and Systems — part I, Vol. 43, No. 2, pp. 153–155, Feb. 1996.

    Article  Google Scholar 

  19. H. Elwan, A. Soliman, “A Novel CMOS Current Conveyor Realization with an Electronically Tunable Current Mode Filter Suitable for VLSI,” IEEE Trans. on Circuits and Systems — part II, Vol. 43, No. 9, pp. 663–670, Sept. 1996.

    Article  Google Scholar 

  20. A. Soliman, “Generation of Current Conveyor-Based All-Pass Filters from Op Amp-Based Circuits,” IEEE Trans. on Circuits and Systems — part II, Vol. 44, No. 4, pp. 324–330, Apr. 1997.

    Article  Google Scholar 

  21. K. Smith, A. Sedra, “Realisation of the Chua Family of New Nonlinear Network Elements Using the Current Conveyor,” IEEE Trans. on Circ. Theory, pp. 137–139, Feb. 1970.

    Google Scholar 

  22. S. Liu, D. Wu, H. Tsao, J. Wu, J. Tsay, “Nonlinear Circuit Applications with Current Conveyors,” IEE Proc. Part G. Vol.140, No.1, pp.1–6, Feb. 1993.

    Google Scholar 

  23. G. Di Cataldo, G. Palumbo, S. Pennisi, “A Schmitt Trigger by Means Of a CCII+,” Int. J. of Circuit Theory and Applications, Vol. 23, No.2, pp. 161–165, Mar. 1995.

    Article  Google Scholar 

  24. E. Bruun, “Analysis of the Noise Characteristics of CMOS Current Conveyors,” Int. J. Analog Integrated Circuits and Signal Processing, No. 12, pp. 71–78, 1997

    Google Scholar 

  25. W. Surakampontorn, V. Riewruja, K. Kumwachara, K. Dejhan, “Accurate CMOS-based Current Conveyors,” IEEE Trans. on Instrumentation and Measurement, Vol.40, No.4, pp.699–702, Aug. 1991.

    Article  Google Scholar 

  26. G. Palmisano, G Palumbo “A Simple CMOS CCII+,” Int. J. of Circ. Theory and Applications, Vol. 23, no.6, pp. 599–603, Nov. 1995.

    Article  Google Scholar 

  27. Th. Laopoulos, S. Siskos, M. Bafleur, Gh. Givelin, “CMOS Current Conveyor,” Electronics Letters, Vol.28, No.24, pp.2261–2262, Nov. 1992.

    Article  Google Scholar 

  28. G. Palmisano, G. Palumbo, S. Pennisi, “Design Strategies for Class A CMOS CCIIs”, in print on Int. J. of Analog Integrated Circuits and Signal processing.

    Google Scholar 

  29. P. Crawley, G. Roberts, “High-Swing MOS Current Mirror with Arbitrarily High Output Resistance,” Electronics Letters, Vol. 28, No. 4, pp. 361–363, Feb. 1992.

    Article  Google Scholar 

  30. A. F. Arbel and L. Golminz, “Output Stage for Current-Mode Feedback Amplifiers, Theory and Applications,” Int. J. Analog Integrated Circuits and Signal Processing, Vol. 2,3, pp. 243–255, 1992.

    Article  Google Scholar 

  31. E. Bruun, “A High-Speed CMOS Current Opamp for Very Low Supply Voltage Operation,” Proc. IEEE ISCAS’94, London, 1994.

    Google Scholar 

  32. E. Bruun, “Bandwidth Optimization of a Low Power, High Speed CMOS Current Op Amp,” Int. J. Analog Integrated Circuits and Signal Processing, No.7, pp. 11–19, 1995

    Google Scholar 

  33. E. Abou-Allam, E. El-Masry, “A 200 MHz Steered Current Operational Amplifier in 1.2–mm CMOS Technology,” IEEE J. of Solid-State Circuits, Vol.32, No.2, pp. 245–249, Feb. 1997.

    Article  Google Scholar 

  34. T. Kaulberg, “A CMOS Current-Mode Operational Amplifier,” IEEE J. of Solid-State Circuits, Vol.28, No.7, pp.849–852, July 1993.

    Article  Google Scholar 

  35. Z. Wang, W. Guggenbthl, “Novel CMOS Current Schmitt Trigger,” Electronics Letters, Vol.24, No.24, pp. 1514–1516, November 1988.

    Article  Google Scholar 

  36. Z. Wang, W. Guggenbthl, “CMOS Current Schmitt Trigger with Fully Adjustable Hysteresis,” Electronics Letters, Vol.25, No.6, pp.397–398, March 1989.

    Article  Google Scholar 

  37. G. Di Cataldo, G. Palumbo “New CMOS Current Schmitt Trigger,” Proc. IEEEISCAS’92, May 1992.

    Google Scholar 

  38. G. Di Cataldo, G. Palmisano, G. Palumbo “Low Area Accurate CMOS Current Schmitt Trigger,” Proc. ECCTD’93, Sept. 1993.

    Google Scholar 

  39. P. Crolla, “A Fast Latching Current Comparator for 12–Bit A/D Applications,” IEEE J. of Solid-State Circuits, Vol. SC-17, No.6, pp.1088–1093, Dec. 1982.

    Article  Google Scholar 

  40. J. Robert, P. Deval, G. Wegmann, “Novel CMOS Pipelined A/D Convenor Architecture Using Current Mirrors,” Electronics Letters, Vol.25, No. 11, pp.691–692, May 1989.

    Article  Google Scholar 

  41. D. Nairn, C. Salama, “Current-Mode Algorithmic Analog-to-Digital Converters,” IEEE J. of Solid-State Circuits, Vol.25, No.4, pp.997–1004, Aug. 1990.

    Article  Google Scholar 

  42. Chu P. Chong, “A Technique for Improving the Accuracy and the Speed of CMOS Current-Cell DAC,” IEEE Trans. on Circuits and Systems, Vol.37, No.10, pp. 1325–1327, Oct. 1990.

    Article  Google Scholar 

  43. D. Nairn, C. Salama “A Ratio-Independent Algorithmic Analog-to-Digital Converter Combining Current Mode and Dynamic Techniques” IEEE Trans. on Circuits and Systems, Vol.37, No.10, pp.319–325, March 1990.

    Article  Google Scholar 

  44. Z. Wang, “Design Methodology of CMOS Algorithmic Current A/D Converters in View of Transistor Mismatches,” IEEE Trans. on Circuits and Systems, Vol.38, No.6, pp.660–667, June 1991.

    Article  Google Scholar 

  45. Seong-Won Kim, Soo-Won Kim, “Current-Mode Cyclic ADC for Low Power and High Speed Applications,” Electronics Letters, Vol.27, No. 10, pp.818–820, May 1991.

    Article  Google Scholar 

  46. C. Wey, “Concurrent Error Detection in Current-Mode A/D Convenors,” Electronics Letters, Vol.27, No.25, pp.2370–2372, Dec. 1991.

    Article  Google Scholar 

  47. W. Krenik, R. Hester, R. DeGroat, “Current-Mode Flash A/D Conversion Based on Current-Splitting Techniques,” Proc. IEEEISCAS’92, 1992.

    Google Scholar 

  48. A. Cujec, C. Salama, D. Nairn, “An Optimized Bit Cell Design for a Pipelined Current-Mode Algorithmic A/D Converter,” Int. J. Analog Integrated Circuits and Signal Processing, No.3, pp.137–141, 1993.

    Google Scholar 

  49. C. Wey, S. Krishnan, S. Sahli, “Design of Concurrent Error Detectable Current-Mode A/D Converters for Real-Time Applications,” Int. J. Analog Integrated Circuits and Signal Processing, No.4, pp.65–74, 1993.

    Google Scholar 

  50. K. Wong, K. Chao, “Current -Mode Cyclic A/D Conversion Technique,” Electronics Letters, Vol.29, N.3, pp.249–250, Feb. 1993.

    Article  Google Scholar 

  51. K. Fong, C. Salama, “Low-Power Current-Mode Algorithmic ADC,” Proc. IEEE ISCAS’94, May 1994.

    Google Scholar 

  52. A. Cable, R. Harjani, “A 6-Bit 50MHz Current-Subtracting Two Step Flash Converter,” Proc. IEEE ISCAS’94, May 1994.

    Google Scholar 

  53. L. Zhang, T. Sculley, T. Fiez, “A 12 Bit, 2V Current-Mode Pipelined A/D Converter Using a Digital CMOS Process,” Proc. IEEE ISCAS’94, May 1994.

    Google Scholar 

  54. M. Yamamoto, A. Kobayashi, Y. Horio, “Switched Current F/I and I/F Converters,” Proc. ECCTD-91, Sept. 1991.

    Google Scholar 

  55. K. Current, J. Current, “CMOS Current-Mode Circuits for Neural Network,” Proc. IEEE ISCAS’90, 1990.

    Google Scholar 

  56. K. Current, “Algorithmic Analogue-to-Quaternary Convertor Circuit Using Current-Mode CMOS,” Electronics Letters, Vol.28, No. 12, pp.1111–1112, June 1992.

    Article  Google Scholar 

  57. H. Gustat, “Fast CMOS Multilevel Current Comparator,” Electronics Letters, Vol.29, No.7, pp.592–593, Apr. 1993.

    Article  Google Scholar 

  58. K. Current, “Current-Mode CMOS Multiple-Valued Logic Circuits,” IEEE J. of Solid-State Circuits, Vol.29, No.2, pp.95–107, Feb. 1994.

    Article  Google Scholar 

  59. D. Freitas, K. Current, “CMOS Current Comparator Circuit,” Electronics Letters, Vol.19, No. 17, pp.695–697, Aug. 1983.

    Article  Google Scholar 

  60. G. Palmisano, G. Palumbo, S. Pennisi, “A High-Accuracy, High-Speed CMOS Current Comparator,” Proc. IEEE ISCAS’94, May 1994.

    Google Scholar 

  61. J. Carreira, J. Franca, “High-Speed CMOS Current Comparators,” Proc. IEEE ISCAS’94, May 1994.

    Google Scholar 

  62. G. Palmisano, G. Palumbo, “Offset-Compensated Low Power Current Comparators”, Electronics Letters, Vol.30, No.20, pp. 1637–1639, Sept. 1994.

    Article  Google Scholar 

  63. C. Wu, C. Chen, M. Tsai, C. Cho, “A 0.5mA Offset-Free Current Comparator for High Precision Current-Mode Signal Processing,” Proc. IEEE ISCAS’91, 1991.

    Google Scholar 

  64. J. Shieh, M. Patil, B. Sheu, “Measurement and Analysis of Charge Injection in MOS Analog Switches,” IEEE J. of Solid-State Circuits, Vol. SC-22, No.2, pp.277–281, Apr. 1987.

    Article  Google Scholar 

  65. G. Wegmann, E. Vittoz, F. Rahali, “Charge Injection in Analog MOS Switches,” IEEE J. of Solid-State Circuits, Vol. SC-22, No.6, pp. 1091–11097, Dec. 1987.

    Article  Google Scholar 

  66. F. Maloberti, G. Palmisano, G. Torelli, “A Novel Approach for High-Frequency Gain-Compensated Sample-and-Hold Circuits,” Proc. IEEE ISCAS’94, May 1991.

    Google Scholar 

  67. G. Di Cataldo, G. Palmisano, G. Palumbo, S. Pennisi, “An Accurate Offset-Compensated Current Comparator,” Proc. IEEE MIDWEST’94, 1994.

    Google Scholar 

  68. G. Palmisano, G. Palumbo, “High Performance CMOS Current Comparator Design,” IEEE Trans. on Circuits and Systems, Vol. 12, No. 12, pp.785–790, Dec. 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Palmisano, G., Palumbo, G., Pennisi, S. (1999). Low-Drive Current Amplifiers. In: CMOS Current Amplifiers. The Springer International Series in Engineering and Computer Science, vol 499. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5135-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5135-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7337-7

  • Online ISBN: 978-1-4615-5135-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics