Skip to main content

Engineering Hematopoietic Grafts Using Elutriation and Positive Cell Selection to Reduce GVHD

  • Chapter
Advances in Allogeneic Hematopoietic Stem Cell Transplantation

Part of the book series: Cancer Treatment and Research ((CTAR,volume 101))

Abstract

Over the last two decades, allogeneic bone marrow transplantation (BMT) has provided a means of delivering potentially curative therapy to patients with hematologic malignancies (1). Unfortunately, approximately 70% of allogeneic BMT patients receiving unmodified (wherein marrow is immediately infused) grafts develop acute graft-vs-host disease (GVHD) with one third of these patients rapidly succumbing to this complication (2,3). Of patients surviving more than 100 days, half will later develop chronic GVHD which has an attendant mortality of almost 50% (4). This incidence increases still further for those individuals who receive an HLA mismatched or unrelated donor graft. It was initially believed that the use of allogeneic peripheral blood stem cells (PBSC) would reduce the incidence of GVHD. Unfortunately, both acute and chronic GVHD are as prevalent (or even greater in the case of chronic GVHD) with PBSC as that seen with bone marrow as the stem cell source (5,6). The lack of suitable donors and high morbidity has popularized other high dose chemotherapy/ stem cell rescue approaches such as autologous BMT and peripheral blood stem cell (PBSC) transplantation. To date, allogeneic BMT still generates the highest cure rates, largely due to its inherent anti-tumor [or graft-vs-leukemia (GVL)] properties which results in low relapse rates (7,8). The dilemma often facing the transplant physician is whether to suggest that a patient undergo a less morbid transplant approach with a higher relapse risk or accept the greater mortality risk of allogeneic BMT in hopes of achieving a cure. Improvements in supportive care and Similar advances must be achieved in the allogeneic setting for this to remain a viable option, regardless of it’s curative potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Santos G.W. Bone Marrow Transplantation in Hematologic Malignancies. Cancer 1990; 65: 786–791.

    Article  PubMed  CAS  Google Scholar 

  2. Noga, S.J. and Hess, A.D. Lymphocyte Depletion in Bone Marrow Transplantation: Will Modulation of Graft-versus-Host Disease Prove to be Superior to Prevention? Seminars in Oncology 1993; 20: 28–33.

    PubMed  CAS  Google Scholar 

  3. Vogelsang, G.B. Acute and Chronic Graft-vs-Host Disease. Current Opinions in Oncology 1993;5: 276–281.

    Article  CAS  Google Scholar 

  4. Vogelsang, G.B., Hess, A.D., and Santos, G.W. Acute Graft-versus-Host Disease: Clinical Characteristics in the Cyclosporine Era. Medicine 1988; 67: 163–174.

    Article  PubMed  CAS  Google Scholar 

  5. Bensinger, W.I., Gift, R., Martin, P., Appelbaum, F.R., Demirer, T., Gooley, T., Lilleby, K., Rowley, S., Sanders, J., Storb, R., and Buckner, CD. Allogeneic peripheral blood stem cell transplantation in patients with advanced hematologicmalignancies:Aretrospectivecomparisonwithmarrow transplantation. Blood 1996; 88: 2794–2800.

    PubMed  CAS  Google Scholar 

  6. Schmitz, N., Dreger, P., Suttorp, M., Rohwedder, E.B., Haferlach, T., Loftier, H., Hunter, A., and Russell, N,H. Primary transplantation of allogeneic peripheral blood progenitor cells mobilized by filgrastim (granulocyte colony-stimulating factor). Blood 1995;85: 1666–1672.

    PubMed  CAS  Google Scholar 

  7. Horowitz, M.M., Gale, R.P., Sondel, P.M., Goldman, J.M., Kersey, J., Kolb, Rimm A.A., Ringden, O., Rozman, C., Speck, B., Truitt, R.L., Zwaan, F.E., Bortin, M.M. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 1990; 75: 555–562.

    PubMed  CAS  Google Scholar 

  8. Ringden O., Horowitz, M. Graft-versus-leukemia reactions in humans. Transplant Proceedings 1989; 21: 2989–2992.

    CAS  Google Scholar 

  9. Noga, S.J. and Hess, A.D. Lymphocyte Depletion in Bone Marrow Transplantation: Will Modulation of Graft-versus-Host Disease Prove to be Superior to Prevention? Seminars in Oncology 1993; 20: 28–33.

    PubMed  CAS  Google Scholar 

  10. Filipovich, A.H., McGlave, P.B., Ramsay, N.K. Ex-vivo Treatment of Donor Bone Marrow with Monoclonal Antibody OKT3 for Prevention of Acute Graft-vs-Host Disease in Allogeneic Histocompatible Bone Marrow Transplantation. Lancet 1984; i: 469–472.

    Article  Google Scholar 

  11. Antin, J., Bierer, B., Smith, B., et al. Selective Depletion of Bone Marrow T Lymphocytes with Anti-CD5 Monoclonal Antibodies: Effective Prophylaxis for Graft-versus-Host Disease in Patients with Hematologic Malignancies. Blood 1991; 78: 2139–2149.

    PubMed  CAS  Google Scholar 

  12. Mitsuyasu, R.T., Champlin, R., Gale, R.P. Treatment of Donor Bone Marrow with Monoclonal Anti-T-Cell Antibody and Complement for the Prevention of Graft-Versus-Host Disease. A Prospective, Randomized, Double-Blind Trial. Annals of Internal Medicine 1986; 105: 20–26.

    PubMed  CAS  Google Scholar 

  13. Ash, R., Casper, J., Chitumbar, C., et al. Successful allogeneic transplantation of T cell depleted bone marrow from closely HLA matched unrelated donors. New England Journal of Medicine 1990; 322: 485–494.

    Article  PubMed  CAS  Google Scholar 

  14. Butturini, A., Bortin, M.M., Seeger, R.C., Gale, R.P. In Cellular Immunotherapy of Cancer 1987, ed. J. Truitt, M. M. Bortin, and R.P. Gale, pp.371–390. New York: Alan R. Liss.

    Google Scholar 

  15. Martin, P.J., et al. Graft Failure in Patients Receiving T-cell-depleted HLA-identical Allogeneic Marrow Transplants. Bone Marrow Transplant 1988; 3: 445–456.

    PubMed  CAS  Google Scholar 

  16. Gaines BA, Yolonda L, Colson C, Kaufman L, Ildstad ST. Facilitating Cells Enable Engraftment of Purified Fetal Liver Stem Cells in Allogeneic Recipients. Exp Hematol 1996;24: 902–913.

    PubMed  CAS  Google Scholar 

  17. Martin, P.J. and Kernan, N.A. T-Cell Depletion for GVHD Prevention in Humans. In Graft-vs-host disease 1997, 2nd ed., ed. Ferrara, Deeg, and Burakoff. pp. 615–637. New York: Marcel Dekker.

    Google Scholar 

  18. Truitt, R.L., Johnson, B.D., McCabe, CM., and Weiler, M.B. Graft versus Leukemia. In Graft-vs-Host Disease, 2nd ed., ed. Ferrara, Deeg, and Burakoff. pp. 385–424. New York: Marcel Dekker.

    Google Scholar 

  19. Martin, P.J., Hansen, J.A., Storb, R. and Thomas, E.D.. Human Marrow Transplantation: An Immunological Perspective. Advances in Immunology 1987;40: 379–438.

    Article  PubMed  CAS  Google Scholar 

  20. Reisner, Y., Kapoor, N., Kirkpatrick, D., Pollack, M.S., Dupont, B., Good, R.A., O’Reilly, R.J. Transplantation for acute leukaemia with HLA-A and B nonidentical parental marrow cells fractionated with soybean agglutinin and sheep red blood cells. Lancet 1981; 2: 327–331.

    Article  PubMed  CAS  Google Scholar 

  21. Hale, G., Cobbold, S., Waldmann, H. T cell depletion with CAMPATH-1 in allogeneic bone marrow transplantation. Transplantation 1988; 45: 753–759.

    Article  PubMed  CAS  Google Scholar 

  22. Noga, S.J. Graft Engineering: The Evolution of Hematopoietic Transplantation. Journal of Hematotherapy 1992;1: 3–17.

    Article  PubMed  CAS  Google Scholar 

  23. Noga, S. J., Donnenberg, A. D., Schwartz, C. L., Strauss, L. C, Civin, C. I., and Santos, G. W. Development of a Simplified Counterflow Centrifiigation-Elutriation Procedure for Depletion of Lymphocytes from Human Bone Marrow. Transplantation 1986; 41(2): 220–229.

    Article  PubMed  CAS  Google Scholar 

  24. Noga, S. J. Elutriation: New Technology for Separation of Blood and Bone Marrow. Lab Medicine. 19(4): 234–239.

    Google Scholar 

  25. Kauffman, M.G., Noga, S.J., Kelly, T.J., and Donnenberg, A.D. Isolation of Cell Cycle Fractions by Counterflow Centrifugal Elutriation. Analytical Biochemistry. 1990; 191: 41–46.

    Article  PubMed  CAS  Google Scholar 

  26. Wagner, J.E., Donnenberg, A.D., Noga, S.J., Cremo, C.A., Gao, I.K., Yin, H.J., Vogelsang, G.B., Rowley, S.D., Saral, R., Santos, G.W. Lymphocyte Depletion of Donor Bone Marrow by Counterflow Centrifugal Elutriation: Results of aPhase I Clinical Trial. Blood 1988; 72(4): 1168–1176.

    PubMed  CAS  Google Scholar 

  27. Wagner, J.E., Santos, G.W., Noga, S.J., Rowley, S.D., Davis, J., Vogelsang, G.B., Farmer, E.R., Zehnbauer, B.A., Saral R., and Donnenberg, A.D. Bone Marrow Graft Engineering by Counterflow Centrifugal Elutriation: Results of a Phase I-II Clinical Trial. Blood 1990;75(6): 1370–1377.

    PubMed  CAS  Google Scholar 

  28. Noga, S.J., Wagner, J.E., Rowley, S.D., Davis, J.M., Vogelsang, G.B., Hess, A.D., Saral, R., Santos, G.W, Donnenberg, A.D. Using Elutriation to Engineer Bone Marrow Allografts. Prog Clin Biol Res 1990; 333: 345–361.

    PubMed  CAS  Google Scholar 

  29. Noga, S.J., Wagner, J.E., Santos, G.W., and Donnenberg, A.D. Allograft Lymphocyte-Dose Modification with Counterflow Centrifugal Elutriation (CCE): Effects on Chronic GVHD and Survival in a Case/Control Study. In 33rd Annual ASH Meeting 1991, Denver.

    Google Scholar 

  30. Noga, S.J., Vogelsang, G.B., and Santos, G.W.. Allograft Lymphocyte Dose Modification (LDM) Prevents GVHD Without Compromising GVL Following BMT for Acute Leukemia.In 34th Annual ASH Meeting, 1992. Annaheim.

    Google Scholar 

  31. Wagner, J.E., Zahurak, M., Piantadosi, S., et. al. Bone marrow transplantation of chronic myelogenous leukemia in chronic phase: Evaluation of risks and benefits. Journal of Clinical Oncology 1992; 10: 779–789.

    PubMed  CAS  Google Scholar 

  32. Flinn, I., Orentas, R., Noga, S.J., Marcellus, D., Vogelsang, G.B., Jones, R.J., and Ambinder, R.F. Low Risk of Epstein-Barr Virus (EBV)-Associated Post-Transplant Lymphoproliferative Disease (PTLD) in Patients Receiving Elutriated Allogeneic Marrow Transplants may Reflect Depletion of EBV Infected Lymphocytes from the Graft. Blood 1995; 86(10): 626a.

    Google Scholar 

  33. Schattenberg A, De Witte T, Salden M, et al. Mixed hematopoietic chimerism after allogeneic transplantation with lymphocyte-depleted bone marrow is not associated with a higher incidence of relapse. Blood 1989; 73: 1367–1372.

    PubMed  CAS  Google Scholar 

  34. Wagner, J.E., Donnenberg, A.D., Noga, S.J., Rowley, S.D., and Santos, G.W. The Role of Post-Transplant Cyclosporine A (CsA) Immunosuppressive Therapy on Engraftment of Lymphocyte Depleted Bone Marrow. In 30th Annual ASH Meeting 1988. San Antonio.

    Google Scholar 

  35. Jones, R.J., Wagner, J.E., Celano, P., Zicha, M.S. and Sharkis, S.J.. Separation of pluripotent haematopoietic stem cells from spleen colony-forming cells (CFU-S). Nature 1990; 347: 188–189.

    Article  PubMed  CAS  Google Scholar 

  36. Noga, S.J., Davis, J.M., Schepers, K., Eby, L., and Berenson, R.J. The Clinical Use of Elutriation and Positive Stem Cell Selecton Columns To Engineer the Lymphocyte and Stem Cell Composition of the Allograft. Prog. Clin. amp Biol.Res 1994;392: 317–324.

    Google Scholar 

  37. Reisner, Y., Martelli, M.F., and Lustig, E. Stem Cell Dose Increase Offers New Possibilities for BMT Across Major Histo-compatibility Barriers in Lethally and Sublethally Irradiated Recipients. Blood 1994; 84: 346a

    Google Scholar 

  38. DeWitte, T., Hoogenhout, J., De Pauw, B., Joldrinet, R., Janssen, J., Wessels, J., Van Daal, W., Justinx, T. and Haanen, C. Depletion of Donor Lymphocytes by Counterflow Centrifugation Successfully Prevents Acute Graft-Vs-Host Disease in Matched Allogeneic Marrow Transplantation. Blood 1986; 67: 1302.

    CAS  Google Scholar 

  39. Berenson, R.J., Shpall, E.J., Auditore-Hargreaves, K., Heimfeld, S., Jacobs, C, Krieger, M.S. Transplantation of CD34+ Hematopoietic Progenitor Cells. Cancer Investigation 1996; 14(6): 589–596.

    Article  PubMed  CAS  Google Scholar 

  40. Civin, C.I., Trishmann, T., Kadan, N.S., Davis, J. Noga, S., Cohen, K., Duffy, B., Groenewegen, I., Wiley, J., Law, P., Hardwick, A., Oldham, F., and Gee, A. Purified CD34-Positive Cells Reconstitute Hematopoiesis. Journal of Clinical Oncology 1996; (8): 2224–2233.

    Google Scholar 

  41. Noga, S.J. and Civin, C.I. Positive Stem Cell Selection of Hematopoietic Grafts for Transplantation. In Graft-vs-Host Disease 1996; 2nd ed., ed. J. Ferrara, H. Deeg, and S. Burakoff, pp. 717–731. New York: Marcel Dekker.

    Google Scholar 

  42. Noga, S.J., Seber, A., Davis, J.M., Berenson, R.J., Vogelsang, G.B., Braine, H.G., Hess, A.D., Marcellus, D., Miller, C.A., Sharkis, S.J., Goodman, S.N., Santos, G.W., and Jones, R.J. CD34 Augmentation Improves Allogeneic T Cell Depleted Bone Marrow Engraftment. Journal Hematotherapy 1998; 7(2): 151–157.

    Article  CAS  Google Scholar 

  43. Noga, S.J., Vogelsang, G.B., Seber, A., Davis, J.M., Schepers, K., Hess, A.D., and Jones, R.J. CD34+ Stem Cell Augmentation of Allogeneic, Elutriated Marrow Grafts Improves Engraftment but Cyclosporine A (CSA) is Still Required to Reduce GVHD and Morbidity. Transplant Proceedings 1997; 29(l-2): 728–732.

    Article  CAS  Google Scholar 

  44. O’Donnell PV, Jones RJ, Vogelsang GB, Seber A, Ambinder RF, Flinn I, Miller CA, Marcellus DC, Griffin C, Abrams R, Braine HG, Grever M, Hess AD, Piantadosi S, Noga SJ. CD34+ Stem Cell Augmentation of Elutriated, Allogeneic Bone Marrow Grafts: Results of a Phase II Clinical Trial of Engraftment and Graft-Versus-Host Disease Prophylaxis in High Risk Hematologic Malignancies. BMT 1998; 22(10): 947–955.

    CAS  Google Scholar 

  45. Noga, S.J., Berenson, R.J., Davis, J.M., Hess, A.D., Braine, H.G., Vogelsang, G.B., Miller, C.A., Jones, R.J. CD34+ Stem Cell Augmentation of T Cell Depleted Allografts Reduces Engraftment Time, GVHD, and Length of Hospitalization. British,Journal of Hematology 1994; 87: 41a.

    Google Scholar 

  46. Noga, S., Miller, C, Berenson, R. Braine, H., Sproul, J., Jones, R. Combined Use of CD34+ Stem Cell Augmentation and Elutriation Reduces the Morbidity and Cost of Allogeneic Bone Marrow Transplantation. American Society of Clinical Oncology 1994; 13: 309a.

    Google Scholar 

  47. Henslee-Downey PJ, Abhyankar SH, Parrish RS et al. Use of Partially Mismatched Related Donors Extends Access to Allogeneic Marrow Transplant. Blood 1997; 89: 3864–3872.

    PubMed  CAS  Google Scholar 

  48. Beatty PG, Hansen JA, Thomas ED, et al. Marrow transplantation from unrelated donors for treatment of hematologic malignancies: effect of mismatching for one HLA locus. Blood 1993; 81: 249–253.

    PubMed  CAS  Google Scholar 

  49. Noga SJ. To TCD or not to TCD? Presented at the BMT in Children Symposium, June 1998, Palm Beach, F1.

    Google Scholar 

  50. Reisner, Y., Martelli, M.F., and Lusting, E. Stem cell dose increase offers new possibilities for BMT across major histocompatibility barriers in lethally and sublethally irradiated recipients. Blood 1994; 84: 346a.

    Google Scholar 

  51. Friedrich W, Muller S, Schreiner T, et al. The Combined Use of Positively Selected, T-Cell Depleted Blood and Bone Marrow Stem Cells in HLA Non-Identical BoneMarrowTransplantationinChildhoodLeukemia. Experimental Hematology. 1995; 23: 854a.

    Google Scholar 

  52. Yeager, A.M., Holland, H.K., Mogul, M.J., Forte, K., Lauer, M., Boyer, M.W., Turner, C.W., Vega, R.A., Beatty, P.G., Jacobs, C.A., Benyunes, M.C., and Wingard, J.R. Transplantation of Positively Selected CD34+ Cells from Haploidentical Parental Donors for Relapsed Acute Leukemia in Children. Blood 1995; 86(10): 291a.

    Google Scholar 

  53. Bacigalupo, A., Mordini, N., Pitto, A., Piaggio, G., and Podesta, M. CD34+ Selected Stem Cell Transplants in Patients with Advanced Leukemia from 3 Loci Mismatched Family Donors. Blood 1995; 86(10): 937a.

    Google Scholar 

  54. Korbling M, Przepiorka D, Engel H, et al. Allogeneic Blood Stem Cell Transplantation (Allo-PBSCT) in 9 Patients with Refractory Leukemia and Lymphoma: Potential Advantage of Blood over Marrow Allografts. Blood 1994; 84: 396.

    Google Scholar 

  55. Link H, Arseniev L, Bahre O, et al. Transplantation of Allogeneic Peripheral Blood and Bone Marrow CD34+ Cells after Immunoselection. Experimental Hematology 1995;23: 855a.

    Google Scholar 

  56. Bensinger WI, Buckner CD, Shannon-Dorcy K, Rowley S, Appelbaum FR, Benyunes M, Clift R, Martin P, Demirer T, Storb R, Lee M, Schiller G: Transplantation of Allogeneic CD34+ Peripheral Blood Stem Cells in Patients with Advanced Hematologic Malignancy. Blood 1996; 88: 4132–4138.

    PubMed  CAS  Google Scholar 

  57. Strober S. T cells, GVHD, and Allogeneic Peripheral Blood Progenitor Cell Transplantation. Proceedings 5th International Symposium on Recent Advances in Hematopoietic Stem Cell Transplantation-Clinical Progress, New Technology and Gene Therapy: 119–120, San Diego, CA, 1997.

    Google Scholar 

  58. Kusnierz-Glaz CR, Still BJ, Amano M, Zukor JD, Negrin RS, Blume KG, Strober S. G-CSF-induced co-mobilization of CD4-CD8- T cells and Hematopoietic Progenitor Cells (CD34+) in the Blood of Normal Donors. Blood 1998; 89(7): 2586–2595.

    Google Scholar 

  59. Takaue Y, Kawano Y, Watanabe T. Autologous and Allogeneic Transplantation with Blood CD34+ cells: a Pediatric Experience. In: Hematopoietic Stem Cell Therapy. Champlin R, Palsson B, Ho AD (eds), Cambridge University Press, London, in press, 1998.

    Google Scholar 

  60. Yeager AM, Amylon M, Wagner J. Allogeneic Stem Cell Transplantation from HLA-Haploidentical Relatives as Treatment for Children with Hematologic Malignancy: a Phase I/II Study Using Mobilized Peripheral Blood Progenitor Cells (PBSCs) that have Undergone CD34 Selection Followed by CD2 Depletion. Blood 1997; 90 (suppl l): 217a.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Noga, S.J. (1999). Engineering Hematopoietic Grafts Using Elutriation and Positive Cell Selection to Reduce GVHD. In: Burt, R.K., Brush, M.M. (eds) Advances in Allogeneic Hematopoietic Stem Cell Transplantation. Cancer Treatment and Research, vol 101. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4987-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4987-1_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7264-6

  • Online ISBN: 978-1-4615-4987-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics