Skip to main content

POU Domain Factors in Neural Development

  • Chapter
Vasopressin and Oxytocin

Abstract

Transcription factors serve critical roles in the progressive development of general body plan, organ commitment, and finally, specific cell types. Comparison of the biological roles of a series of individual members within a family permits some generalizations to be made regarding the developmental events that are likely to be regulated by a particular class of transcription factors. Here, we evidence that the developmental functions of the family of transcription factors characterized by the POU DNA binding motif exerts roles in mammalian development.

The POU domain family of transcription factors was defined following the observation that the products of three mammalian genes, Pit-1, Oct-1, and Oct-2, and the protein encoded by the C. elegans gene unc-86, shared a region of homology, known as the POU domain1–9. The POU domain is a bipartite DNA binding domain10–13, consisting of two highly conserved regions, tethered by a variable linker. The approximately 75 amino acid N-terminal region was called the POU-specific domain and the C-terminal 60 amino acid region, the POU-homeodomain.

High-affinity site-specific DNA binding by POU domain transcription factors requires both the POU-specific and the POU-homeodomain11–15. Resolution of the crystal structures of Oct-1 and Pit-1 POU domains bound to DNA as a monomer and homodimer, respectively, confirmed several of the in vitro findings regarding interactions of this bipartite DNA binding domain with DNA and has provided important information regarding the flexibility and versatility of POU domain proteins16–17.

Overall the crystal structure of a monomer of the Oct-1 POU domain bound to the octamer element was similar to that predicted by the NMR solution structures of the POU-specific domain18–19 and the POU-homeodomain20–22 in isolation, with the POU-specific domain consists of four alpha helices, with the second and third helices forming a structure similar to the helix-turn-helix motif of the λ and 434 repressors; several of the DNA base contacts are also conserved23.

A homodimer of the Pit-1 POU domain was crystallized bound to a Pit-1 dimer DNA element that is closely related to a site in the proximal promoter of the prolactin gene17. The structure of the Pit-1 POU domain on DNA is very similar to that of Oct-1, and the Pit-1 POU-homeodomain/DNA structure is strikingly similar to that of other homeodomains, including the Oct-1 POU-homeodomain. The DNA contacts made by the Pit-1 POU-specific domain are also similar to those of Oct-1 and conserved with many made by the prokaryotic repressors. In the Oct-1 crystal, the POU-specific domain recognizes a GCAT half-site, while the corresponding sequence recognized by the Pit-1 POU-specific domain, GTAT, is on the opposing strand. As a result, the orientation of the Pit-1 POU-specific domain relative to the POU-homeodomain is flipped, as compared to the Oct-1 crystal structure, indicating the remarkable flexibility of the POU-specific domain in adapting to variations in sequence within the site. Also in contrast to the Oct-1 monomer structure is the observation that the POU-specific and POU-homeodomain of each Pit-1 molecule make major groove contacts on the same face of the DNA, consistent with the constraints imposed by its 15 amino acid linker. As a result, the Pit-i POU domain homodimer essentially surrounds its DNA binding site. In the Pit-1 POU domain homodimer the dimerization interface is formed between the C-terminal end of helix 3 of the POU-homeodomain of one Pit-1 molecule and the N-terminus of helix 1 and the loop between helices 3 and 4 of the POU-specific domain of the other Pit-1 molecule. In contrast to other homeodomain crystal structures, the C-terminus of helix 3 in the Pit-1 POU-homeodomain has an extended structure17.

Because each member of the class III POU domain gene family exhibits a distinct, yet overlapping, pattern of expression in the developing and mature nervous system24, it is tempting to consider the possibility that combinatorial codes of specific POU III proteins are responsible for determining specific neuronal phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bodner, M., J.L. Castrillo, L.E. Theill, T. Deerinck, M. Ellisman and M. Karin. 1988. The pituitary-specific transcription factor GHF-1 is a homeobox-containing protein. Cell 55:505–518.

    Article  PubMed  CAS  Google Scholar 

  2. Ingraham, H.A., R.P. Chen, H.J. Mangalam, H.P. Elsholtz, S.E. Flynn, C.R. Lin, D.M. Simmons, L. Swanson, and M.G. Rosenfeld. 1988. A tissue-specific transcription factor containing a homeodomain specifies a pituitary phenotype. Cell 55:519–529.

    CAS  Google Scholar 

  3. Sturm, R.A., G. Das, and W. Herr. 1988. The ubiquitous octamer-binding protein Oct-1 contains a POU domain with a homeo box subdomain. Genes & Dev 2:1582–1599.

    Article  CAS  Google Scholar 

  4. Cleary, M.A., and W. Herr. 1995. Mechanisms for flexibility in DNA sequence recognition and VP16-inducedcomplex formation by the Oct-1 POU domain. Mol Cell Biol 15:2090–2100.

    PubMed  CAS  Google Scholar 

  5. Ko, H.S., P. Fast, W. McBride, and L.M. Staudt. 1988. A human protein specific for the immunoglobulin octamer DNA motif contains a functional homeobox domain. Cell 55:135–144.

    Article  PubMed  CAS  Google Scholar 

  6. Müller, M.M., S. Ruppert, W. Schaffner, and R. Matthias. 1988. A cloned octamer transcription factor stimulates transcription from lymphoid-specific promoters in non-B cells. Nature 336:544–551.

    Article  PubMed  Google Scholar 

  7. Scheidereit, C., J.A. Cromlish, T. Gerster, K. Kawakami, C.G. Balmaceda, R.A. Currie, and R.G. Roeder. 1988. A human lymphoid-specific transcription factor that activates immunoglobulin genes is a homoeobox protein. Nature 336:551–557.

    Article  PubMed  CAS  Google Scholar 

  8. Finney, M., G. Ruvkun, and H.R. Horvitz. 1988. The C. elegans cell lineage and differentiation gene unc86 encodes a protein with a homeodomain and extended similarity to transcription factors. Cell 55:757–769.

    Article  PubMed  CAS  Google Scholar 

  9. Herr, W., R.A. Sturm, R.G. Clerc, L.M. Corcoran, D. Baltimore, P.A. Sharp, H.A. Ingraham, M.G. Rosenfeld, M. Finney, G. Ruvkun, et al. 1988. The POU domain: a large conserved region in the mammalian pit-1, oct-1, oct-2, and Caenorhabditis elegans unc-86 gene products. Genes & Dev 2:1513–1516.

    Article  CAS  Google Scholar 

  10. Sturm, R.A., and W. Herr. 1988. The POU domain is a bipartite DNA-binding structure. Nature 336:601–604.

    Article  PubMed  CAS  Google Scholar 

  11. Ingraham, H.A., S.E. Flynn, J.W. Voss, V.R. Albert, M.S. Kapiloff, L. Wilson, and M.G. Rosenfeld. 1990. The POU-specific domain of Pit-1 is essential for sequence-specific, high affinity DNA binding and DNA-dependent Pit-I-Pit-1 interactions. Cell 61:1021–1033.

    Article  PubMed  CAS  Google Scholar 

  12. Botfield, M.C., A. Jancso, and M.A. Weiss. 1992. Biochemical characterization of the Oct-2 POU domain with implication for bipartite DNA recognition. Biochemistry 31:584l-5848.

    Article  Google Scholar 

  13. Kristie, T.M., and P.A. Sharp. 1990. Interactions of the Oct-1 POU subdomains with specific DNA sequences and with the HSV alpha-trans-activator protein. Genes & Dev 4:2383–2396.

    Article  CAS  Google Scholar 

  14. Verrijzer, C.P., M.J. Alkema, W.W. van Weperen, H.C. Van Leeuwen, M.J. Strating, and P.C. van der Vliet. 1992. The DNA binding specificity of the bipartite POU domain and its subdomains. Embo J 11:4993–5003.

    PubMed  CAS  Google Scholar 

  15. Verrijzer, C.P., A.J. Kal, and P.C. Van der Vliet. 1990. The DNA binding domain (POU domain) of transcription factor oct-1 suffices for stimulation of DNA replication. Ernbo J 9:1883–1888.

    CAS  Google Scholar 

  16. Klemm, J.D., M.A. Rould, R. Aurora, W. Herr. and C.O. Pabo. 1994. Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA recognition with tethered DNA-binding modules. Cell 77:21–32.

    CAS  Google Scholar 

  17. Jacobson, E.M., P. Li, A. Leon-del-Rio, M.G. Rosenfeld, and A. Aggarwal. 1997. Structure of Pit-1 POU domain bound to DNA as a dimer: unexpected arrangement and flexibility. Genes & Dev 11:198–212.

    Article  CAS  Google Scholar 

  18. Assa-hunt, N., R.J. Mortishire-Smith, R. Aurora, W. Herr, and P.E. Wright. 1993. The solution structure of the Oct-1 POU-specific domain reveals a striking similarity to the bacteriophage lambda repressor DNA-binding domain. Cell 73:193–205.

    Article  Google Scholar 

  19. Dekker, N., M. Cox, R. Boelens, C.P. Verrijzer, P.C. van der Vliet, and R. Kaptein. 1993. Solution structure of the POU-specific DNA-binding domain of Oct-1. Nature 362:852–855.

    Article  PubMed  CAS  Google Scholar 

  20. Sivaraja, M., M.C. Botfield, M. Mueller, A. Jancso, and M.A. Weiss. 1994. Solution structure of a POU-specific homeodomain: 3D-NMR studies of human B-cell transcription factor Oct-2. Biochemistry 33:9845–9855.

    Article  PubMed  CAS  Google Scholar 

  21. Cox, M., P.J. van Tilborg, W. de Laat, R. Boelens, H.C. van Leeuwen, P.C. van der Vliet, and R. Kaptein. 1995. Solution structure of the Oct-1 POU homeodomain determined by NMR and restrained molecular dynamics. J Biomolecular Nmr 6:23–32.

    Article  CAS  Google Scholar 

  22. Morita, E.H., M. Shirakawa, F. Hayashi, M. Imagawa, and Y. Kyogoku. 1995. Structure of the Oct-3 POUhomeodomain in solution, as determined by triple resonance heteronuclear multidimensional NMR spectroscopy. Protein Science 4:729–739.

    Article  PubMed  CAS  Google Scholar 

  23. Klemm, J.D., and C.O. Pabo. 1996. Oct-1 POU domain-DNA interactions: cooperative binding of isolated subdomains and effects of covalent linkage. Genes & Dev 10:27–36.

    Article  CAS  Google Scholar 

  24. Alvarez-Bolado, G, M.G. Rosenfeld, and L.W. Swanson. 1995. Model of forebrain regionalization based on spatiotemporal patterns of POU-III homeobox gene expression, birthdates, and morphological features. J Comp Neurol 355:237–295.

    Article  PubMed  CAS  Google Scholar 

  25. Swanson, L. W. 1986. Organization of mammalian neuroendocrine system. In Handbook of Physiology. Sect. 1, The Nervous System, Vol IV, Intrinsic Regulatory Systems of the Brain, Edited by V.B. Mountcastle (Sect. Ed.), Floyd E. Bloom (Vol. Ed.), and S.R. Geiger (Exec. Ed.), pp.317–363. Bethesda: American Physiological Society.

    Google Scholar 

  26. Swanson, L. W. 1987. The hypothalamus. In Handbook of Chemical Neuroanatonmy. A Bjorklun, T. Hokfelt and L. W. Swanson, eds.

    Google Scholar 

  27. Cunningham Jr., E. T. and P. E. Sawchenko. 1991. Reflex control of magnocellular vasopressin and oxytocin secretion. TINS 14: 404–411.

    Google Scholar 

  28. Swanson, L.W. and P. E. Sawchenko. 1983. Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Ann. Rev. Neurosci. 6: 269–324.

    Article  PubMed  CAS  Google Scholar 

  29. Sawchenko, P.E., Imaki, and W. Vale. 1992. Colocalization of neuroactive substances in the endocrine hypothalamus. In Functional Anatomy of the Neuroendocrine Hypothalamus, Ciba Foundation Symposium No. 168, John Wiley, London, pp.16–42.

    CAS  Google Scholar 

  30. Meister B. 1993. Gene expression and chemical diversity in hypothalamic neurosecretory neurons. Mol. Neurobio. 7: 87–110.

    Article  CAS  Google Scholar 

  31. Xiang, M., L. Zhou, J.P. Macke, T. Yoshioka, S.H. Hendry, R.L. Eddy, T.B. Shows, and J. Nathans. 1995. The Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons. J Neurosci 15:4762–4785.

    PubMed  CAS  Google Scholar 

  32. Dawson, S.J., Y.Z. Liu, B. Rodel, T. Moroy, and D.S. Latchman. 1996. The ability of POU family transcription factors to activate or repress gene expression is dependent on the spacing and context of their specific response elements. Biochemical J 314:439–443.

    CAS  Google Scholar 

  33. Malik, K.F., J. Kim, A.L. Hartman, P. Kim, and W.S. Young 3rd. 1996. Binding preferences of the POU domain protein Brain-4: implications for autoregulation. Brain Research. Mol Brain Res 38:209–221.

    Article  CAS  Google Scholar 

  34. Okazawa, H., I. Imafuku, M.T. Minowa, I. Kanazawa, H. Hamada, and M.M. Mouradian. 1996. Regulation of striatal D I A dopamine receptor gene transcription by Brn-4. Proc Natl Acad Sei USA 93:11933–11938.

    Article  CAS  Google Scholar 

  35. Gruber, C.A., J.M. Rhee, A. Gleiberman, and E.E. Turner. 1997. POU-domain factors of the Bm-3 class recognize functional DNA elements which are distinctive, symmetrical, and highly conserved in evolution. Mol Cell Biol (In press).

    Google Scholar 

  36. Gstaiger, M., L. Knoepfel, O. Georgiev, W. Schaffner, and C.M. Hovens. 1995. A B-cell coactivator of octamer-binding transcription factors. Nature 373:360–362.

    Article  PubMed  CAS  Google Scholar 

  37. Luo, Y., and R.G. Roeder. 1995. Cloning, functional characterization, and mechanism of action of the Bcell-specific transcriptional coactivator OCA-B. Mol Cell Biol 15:4115–4124.

    PubMed  CAS  Google Scholar 

  38. Pfisterer, P., S. Zwilling, J. Hess, and T. Wirth. 1995. Functional characterization of the murine homolog of the B cell-specific coactivator BOB.1/OBF.I. J Biol Chem 270:29870–29880.

    Article  PubMed  CAS  Google Scholar 

  39. Strubin, M., J.W. Newell, and R. Matthias. 1995. OBF-I, a novel B cell-specific coactivator that stimulates immunoglobulin promoter activity through association with octamer-binding proteins. Cell 80:497–506.

    Article  PubMed  CAS  Google Scholar 

  40. Cepek, K.L., D.I. Chasman, and P.A. Sharp. 1996. Sequence-specific DNA binding of the B-cell-specific coactivator OCA-B. Genes & Dey 10:2079–2088.

    Article  CAS  Google Scholar 

  41. Gstaiger, M., O. Georgiev, H. van Leeuwen, P. van der Vliet, and W. Schaffner. 1996. The B cell coactivator Bobl shows DNA sequence-dependent complex formation with Oct-1/Oct-2 factors, leading to differential promoter activation. Embo J 15:2781–2790.

    PubMed  CAS  Google Scholar 

  42. Imagawa, M., A. Miyamoto, M. Shirakawa, H. Hamada, and M. Muramatsu. 1991. Stringent integrity requirements for both trans-activation and DNA-binding in a trans-activator, Oct3. Nucleic Acids Res 19:4503–4508.

    Article  PubMed  CAS  Google Scholar 

  43. Schöler, H.R., T. Ciesiolka, and P. Gruss. 1991. A nexus between Oct-4 and El A: implications for gene regulation in embryonic stem cells. Cell 66:291–304.

    Article  PubMed  Google Scholar 

  44. Brehm, A., K. Ohbo, and H. Scholer. 1997. The carboxy-terminal transactivation domain of Oct-4 acquires cell specificity through the POU domain. Mol Cell Biol 17:154–162.

    PubMed  CAS  Google Scholar 

  45. Holloway, J.M., D.P. Szeto, K.M. Scully, C.K. Glass, and M.G. Rosenfeld. 1995. Pit-1 binding to specific DNA sites as a monomer or dimer determines gene-specific use of a tyrosine-dependent synergy domain. Genes &Dev 9:1992–2006.

    Article  CAS  Google Scholar 

  46. Dollé, R, J.L. Castrillo, L.E. Theill, T. Deerinck, M. Ellisman M, and M. Karin. 1990. Expression of GHFI protein in mouse pituitaries correlates both temporally and spatially with the onset of growth hormone gene activity. Cell 60:809–820.

    Article  PubMed  Google Scholar 

  47. Simmons, D.M., J.W. Voss, H.A. Ingraham, J.M. Holloway, R.S. Broide, M.G. Rosenfeld, and L.W. Swanson. 1990. Pituitary cell phenotypes involve cell-specific Pit-1 mRNA translation and synergistic interactions with other classes of transcription factors. Genes & Dev 4:695–711.

    Article  CAS  Google Scholar 

  48. Andersen, B. and M.G. Rosenfeld. 1994. Pit-1 determines cell types during development of the anterior pituitary gland: A model for transcriptional regulation of cell phenotypes in mammalian organogenesis. J Biol Chem 269:29335–29338.

    PubMed  CAS  Google Scholar 

  49. Li, S., E.B. Crenshaw 3d., E.J. Rawson, D.M. Simmons, L.W. Swanson, and M.G. Rosenfeld. 1990. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature 347:528–533.

    CAS  Google Scholar 

  50. Radovick, S., M. Nations, Y. Du, L.A. Berg, B.D. Weintraub, and F.E. Wondisford. 1992. A mutation in the POU-homeodomain of Pit-1 responsible for combined pituitary hormone deficiency. Science 257:1115–1118.

    Article  PubMed  CAS  Google Scholar 

  51. Pfaffle, R.W., G.E. DiMattia, J.S. Parks, M.R. Brown, J.M. Wit, M. Jansen, H. Van der Nat, J.L. Van den Brande, M.G. Rosenfeld, and H.A. Ingraham HA. 1992. Mutation of the POU-specific domain of Pit-1 and hypopituitarism without pituitary hypoplasia. Science 257:1118–1121.

    Article  PubMed  CAS  Google Scholar 

  52. Cohen, L.E., F.E. Wondisford, A. Salvatoni, M. Maghnie, F. Brucker-Davis, B.D. Weintraub, and S. Radovick. 1995. A “hot spot” in the Pit-1 gene responsible for combined pituitary hormone deficiency: clinical and molecular correlates. J Clin Endo Metab 80:679–684.

    Article  CAS  Google Scholar 

  53. Rhodes, S.J., R. Chen, G.E. DiMattia, K.M. Scully, K.A. Kalla, S.C. Lin,V.C. Yu, and M.G. Rosenfeld. 1993. A tissue-specific enhancer confers Pit- I -dependent morphogen inducibility and autoregulation on the pit-1 gene. Genes &Dev 7:913–932.

    CAS  Google Scholar 

  54. Chen, R.P., H.A. Ingraham, M.N. Treacy, V.R. Albert, L. Wilson, and M.G. Rosenfeld. 1990. Autoregulation of pit-1 gene expression mediated by two cis-active promoter elements. Nature 346:583–586.

    Article  PubMed  CAS  Google Scholar 

  55. McCormick, A., H. Brady, L.E. Theill, and M. Karin. 1990. Regulation of the pituitary-specific homeobox gene GHF l by cell-autonomous and environmental cues. Nature 345:829–832.

    Article  PubMed  CAS  Google Scholar 

  56. Seidah, N.G., J.C. Barale, M. Marcinkiewicz, M.G. Mattei, R. Day, and M. Chretien. 1994. The mouse homeoprotein mLIM-3 is expressed early in cells derived from the neuroepithelium and persists in adult pituitary. DNA Cell Biol 13:1163–1180

    Article  PubMed  CAS  Google Scholar 

  57. Bach, I., S.J. Rhodes, R.V. Pearse 2nd, T. Heinzel, B. Gloss, K.M. Scully, P.E. Sawchenko, and M.G. Rosenfeld. 1995. P-Lim, a LIM homeodomain factor, is expressed during pituitary organ and cell commitment and synergizes with Pit-1. Proc Natl Acad Sci USA 92:2720–2724.

    Article  PubMed  CAS  Google Scholar 

  58. Zhadanov, A.B., S. Bertuzzi, M. Taira, I.B. Dawid, and H. Westphal. 1995. Expression pattern of the murine LIM class homeobox gene Lhx3 in subsets of neural and neuroendocrine tissues. Dev Dynamics 202:354–364.

    Article  CAS  Google Scholar 

  59. Szeto, D.P., A.K. Ryan, S.M. O’Connell, and M.G. Rosenfeld. 1996. P-OTX: A Pit-1 interacting homeodomain factor expressed during anterior pituitary gland development. Proc Natl Acad Sci USA 93:7706–7710.

    Article  PubMed  CAS  Google Scholar 

  60. Andersen, B., R.V. Pearse II, K. Jenne, M. Sornson, S-C. Lin, A. Bartke, and M.G. Rosenfeld. 1995. The Ames dwarf gene is required for Pit-I geneactivation. Dev Biol 172:495–503.

    Article  PubMed  CAS  Google Scholar 

  61. Lamonerie, T., J.J. Tremblay, C. Lanctot, M. Therrien, Y. Gauthier, and J. Drouin. 1996. Ptxl, a bicoid-related homeo box transcription factor involved in transcription of the pro-opiomelanocortin gene. Genes & Dev 10:1284–1295.

    Article  CAS  Google Scholar 

  62. Gage, P.J., M.L. Roller, T.L. Saunders, L.M. Scarlett, and S.A. Camper. 1996. Anterior pituitary cells defective in the cell-autonomous factor, df, undergo cell lineage specification but not expansion. Development 122:151–160.

    PubMed  CAS  Google Scholar 

  63. Sornson, M.W., W. Wu, J.S. Dasen, S.E. Flynn, D.J. Norman, S.M. O’Connell, I. Gukovsky, C. Carriere, A.K. Ryan, A.P. Miller, L. Zuo, A.S. Glieberman, B. Andersen, W.G. Reamer, and M.G. Rosenfeld. 1996. Pituitary lineage determination by the Prophet of Pit-1 homeodomainfactor defective in Ames dwarfism. Nature 384:327–333.

    Article  PubMed  CAS  Google Scholar 

  64. DiMattia, G.E., S.J. Rhodes, A. Krones, C. Carrière, S. O’Connell, K. Kalla, C. Arias, P. Sawchenko, and M.G. Rosenfeld. 1997. The Pit-1 gene is regulated by distinct early and late pituitary-specific enhancers. Dev Biol 182:180–190.

    Article  PubMed  CAS  Google Scholar 

  65. He, X., M.N. Treacy, D.M. Simmons, H.A. Ingraham, L.W. Swanson, and M.G. Rosenfeld. 1989. Expression of a large family of POU-domain regulatory genes in mammalian brain development. Nature 340:35–41.

    Article  PubMed  CAS  Google Scholar 

  66. Monuki, E.S., R. Kuhn, and G. Lemke. 1993. Repression of the myelin PO gene by the POU transcription factor SCIP. Mech Dev 42:15–32.

    Article  PubMed  CAS  Google Scholar 

  67. Suzuki, N., H. Rohdewohld, T. Neuman, P. Gruss, and H.R. Scholer. 1990. Oct-6: a POU transcription factor expressed in embryonal stem cells and in the developing brain. Embo J 9:3723–3732

    PubMed  CAS  Google Scholar 

  68. Meijer, D., A. Graus, R. Kraay, A. Langeveld, M.P. Mulder, and G. Grosveld. 1990. The octamer binding factor Oct6: cDNA cloning and expression in early embryonic cells. Nucleic Acids Res 18:7357–7365.

    Article  PubMed  CAS  Google Scholar 

  69. Mathis, J.M., D.M. Simmons, X. He, L.W. Swanson, and M.G. Rosenfeld. 1992. Brain 4: a novel mammalian POU domain transcription factor exhibiting restricted brain-specific expression. Embo J 11:2551–2561.

    PubMed  CAS  Google Scholar 

  70. Hara, Y., A.C. Rovescalli, Y. Kim, and M. Nirenberg. 1992. Structure and evolution of four POU domain genes expressed in mouse brain. Proc Natl Acad Sci USA 89:3280–3284.

    Article  PubMed  CAS  Google Scholar 

  71. Le Moine, C., and W.D. Young 3d. 1992. RHS2, a POU domain-containing gene, and its expression in developing and adult rat. Proc Natl Acad Sci USA 89:3285–3289.

    Google Scholar 

  72. Johnson, W.A., and J. Hirsh. 1990. Binding of a Drosophila POU-domain protein to a sequence element regulating gene expression in specific dopaminergic neurons. Nature 343:467–470.

    Article  PubMed  CAS  Google Scholar 

  73. Agarwal, V.R., and S.M. Sato. 1991. XLPOU 1 and XLPOU 2, two novel POU domain genes expressed in the dorsoanterior region of Xenopus embryos. Dev Biol 147:363–373.

    Article  PubMed  CAS  Google Scholar 

  74. Baltzinger, M., E. Payen, and P. Remy. 1992. Nucleotide sequence of XLPOU3 cDNA, a member of the POU domain gene family expressed in Xenopus laevis embryos. Nucleic Acids Res 20:1993.

    Article  PubMed  CAS  Google Scholar 

  75. Matsuzaki, T., H. Amanuma, and H. Takeda. A POU-domain gene of zebrafish, ZFPOUI, specifically expressed in the developing neural tissues. Biochem Biophys Res Comm 187:1446–1453.

    Google Scholar 

  76. Hauptmann, G.. and T. Gerster. 1996. Complex expression of the zp-50 you gene in the embryonic zebrafish brain is altered by overexpression of sonic hedgehog. Development 122:1769–1780.

    PubMed  CAS  Google Scholar 

  77. Sampath, K., and G.W. Stuart. 1996. Developmental expression of class III and IV POU domain genes in the zebrafish. Biochem Biophys Res Comm 219:565–571.

    Article  PubMed  CAS  Google Scholar 

  78. Spaniol, P., C. Bommann, G. Hauptmann, and T. Gerster. 1996. Class Ill POU genes of zebrafish are predominantly expressed in the central nervous system. Nucleic Acids Res 24:4874–4881.

    Article  PubMed  CAS  Google Scholar 

  79. Fujii, H., and H. Hamada. 1993. A CNS-specific POU transcription factor, Bm-2, is required for establishing mammalian neural cell lineages. Neuron 11:1197–1206.

    Article  PubMed  CAS  Google Scholar 

  80. Nakai, S., H. Kawano, T. Yudate, M. Nishi, J. Kuno, A. Nagata, K. Jishage, H. Hamada, H. Fujii, K. Kawamura K., et al. 1995. The POU domain transcription factor Bm-2 is required for the determination of specific neuronal lineages in the hypothalamus of the mouse. Genes & Dev 9:3109–3121.

    Article  CAS  Google Scholar 

  81. Schonemann, M.D., A.K. Ryan, R.J. McEvilly, S.M. O’Connell, C.A. Arias, K.A. Kalla, P. Li, P.E. Sawchenko, and M.G. Rosenfeld. 1995. Development and survival of the endocrine hypothalamus and posterior pituitary gland requires the neuronal POU domain factor Brn-2. Genes & Dev 9:3122–3135.

    Article  CAS  Google Scholar 

  82. Monuki, E.S., G. Weinmaster, R. Kuhn, and G. Lemke. 1989. SCIP: a glial POU domain gene regulated by cyclic AMP. Neuron 3:783–793.

    Article  PubMed  CAS  Google Scholar 

  83. Monuki, E.S., R. Kuhn, G. Weinmaster, B.D. Trapp, and G. Lemke. 1990. Expression and activity of the POU transcription factor SCIP. Science 249:1300–1303.

    Article  PubMed  CAS  Google Scholar 

  84. Collarini, E.J., N. Pringle, H. Mudhar, G. Stevens, R. Kuhn, E.S. Monuki, G. Lemke, and W.D. Richardson. 1991. Growth factors and transcription factors in oligodendrocyte development. J Cell Science 15:117–123.

    CAS  Google Scholar 

  85. Scherer, S.S., D.Y. Wang, R. Kuhn, G. Lemke, L. Wrabetz, and J. Kamholz. 1994. Axons regulate Schwann cell expression of the POU transcription factor SCIP. J Neurosci 14:1930–1942.

    PubMed  CAS  Google Scholar 

  86. He, X., R. Gerrero, D.M. Simmons, R.E. Park, C.J. Lin, L.W. Swanson, and M.G. Rosenfeld. 1991. Tst-1, a member of the POU domain gene family, binds the promoter of the gene encoding the cell surface adhesion molecule P0. Mol Cell Biol 11:1739–1744.

    PubMed  CAS  Google Scholar 

  87. Zwart, R., L. Broos, G. Grosveld, and D. Meijer. 1996. The restricted expression pattern of the POU factor Oct-6 during early development of the mouse nervous system. Mech Dev 54:185–194.

    Article  PubMed  CAS  Google Scholar 

  88. Faus, I., H.J. Hsu, and E. Fuchs. 1994. Oct-6: a regulator of keratinocyte gene expression in stratified squamous epithelia. Mol Cell Biol 14:3263–3275.

    PubMed  CAS  Google Scholar 

  89. Frantz, G.D., A.P. Bohner, R.M. Akers, and S.K. McConnell. 1994. Regulation of the POU domain gene SCIP during cerebral cortical development. J Neurosci 14:472–485.

    PubMed  CAS  Google Scholar 

  90. Bermingham, J.R. Jr., S.S. Scherer, S. O’Connell, E. Arroyo, K.A. Kalla, F.L. Powell, and M.G. Rosenfeld. 1996. Tst-1/Oct-6/SCIP regulates a unique step in peripheral myelination and is required for normal respiration. Genes & Dev 10:1751–1762.

    Article  CAS  Google Scholar 

  91. Jaegle, M., W. Mandemakers, L. Broos, R. Zwart, A. Karis, P. Visser, F. Grosveld, and D. Meijer. 1996. The POU factor Oct-6 and Schwann cell differentiation. Science 273:507–510.

    Article  PubMed  CAS  Google Scholar 

  92. Weinstein, D.E., P.G. Burrola, and G. Lemke. 1995. Premature Schwann cell differentiation and hypermyelination in mice expressing a targeted antagonist of the POU transcription factor SCIP. Mol Cell Neurosci 6:212–229.

    Article  PubMed  CAS  Google Scholar 

  93. Fyodorov, D., and E. Deneris. 1996. The POU domain of SCIP/Tst-1/Oct-6 is sufficient for activation of any acetylcholine receptor promoter. Mol Cell Biol 16:5004–5014.

    PubMed  CAS  Google Scholar 

  94. Wegner, M., D.W. Drolet, and M.G. Rosenfeld. 1993b. Regulation of JC virus by the POU-domain transcription factor Tst-1: implications for progressive multifocal leukoencephalopathy. Proc Natl Acad Sci USA 90:4743–4747.

    Article  CAS  Google Scholar 

  95. Renner, K., H. Leger, and M. Wegner. 1994. The POU domain protein Tst-1 and papovaviral large tumor antigen function synergistically to stimulate glia-specific gene expression of JC virus. Proc Natl AcadSci USA 91:6433–6437.

    Article  CAS  Google Scholar 

  96. Sock, E., K. Renner, D. Feist, H. Leger, and M. Wegner. 1996. Functional comparison of PML-type and archetype strains of JC virus. J Virology 70:1512–1520.

    PubMed  CAS  Google Scholar 

  97. Misra, V., S. Walter, P. Yang, S. Hayes, and P. O’Hare. 1996. Conformational alteration of Oct-1 upon DNA binding dictates selectivity in differential interactions with related transcriptional coactivators. Mol Cell Biol 16:4404 1413.

    Google Scholar 

  98. Huang, C.C., and W. Herr. 1996. Differential control of transcription by homologous homeodomain coregulators. Mol Cell Biol 16:2967–2976.

    PubMed  CAS  Google Scholar 

  99. Leger, H., E. Sock, K. Renner, F. Grummt, and M. Wegner. 1995. Functional interaction between the POU domain protein Tst-1/Oct-6 and the high-mobility-group protein HMG-I/Y. Mol Cell Biol 15:3738–3747.

    PubMed  CAS  Google Scholar 

  100. Zwilling, S., H. Konig, and T. Wirth. 1995. High mobility group protein 2 functionally interacts with the POU domains of octamer transcription factors. EMBO J. 14: 1198–1208.

    PubMed  CAS  Google Scholar 

  101. Lillycrop, K.A., V.S. Budrahan, N.D. Lakin, G. Terrenghi, J.N. Wood, J.M. Polak, and D.S. Latchman. 1992. A novel POU family transcription factor is closely related to Brn-3 but has a distinct expression pattern in neuronal cells. Nucleic Acids Res 20:5093–5096.

    Article  PubMed  CAS  Google Scholar 

  102. Collura, R.G., P.E. Fisher, M. Datta, S. Mellis, C. Thiele, K. Huebner, C.M. Croce, M.A. Israel, T. Theil, T. Moroy, et al. 1992. A novel POU homeodomain gene specifically expressed in cells of the developing mammalian nervous system. Nucleic Acids Res 20:4919–4925.

    Article  Google Scholar 

  103. Gerrero, M.R., R.J. McEvilly, E. Turner, C.R. Lin, S. O’Connell, K.J. Jenne, M.V. Hobbs, and M.G. Rosenfeld. 1993. Brn-3.0: a POU-domain protein expressed in the sensory, immune, and endocrine systems that functions on elements distinct from known octamer motifs. Proc Natl Acad Sci USA 90:10841–10845.

    Article  PubMed  CAS  Google Scholar 

  104. Ninkina, N.N., G.E. Stevens, J.N. Wood, and W.D. Richardson. 1993. A novel Brn3-like POU transcription factor expressed in subsets of rat sensory and spinal cord neurons. Nucleic Acids Res 21:3175–3182.

    Article  PubMed  CAS  Google Scholar 

  105. Xiang, M., L. Zhou, Y.W. Peng, R.L. Eddy, T.B. Shows and J. Nathans. 1993. Brn-3b: a POU domain gene expressed in a subset of retinal ganglion cells. Neuron 11:689–701.

    Article  PubMed  CAS  Google Scholar 

  106. Turner, E.E., K.J. Jenne, and M.G. Rosenfeld. 1994. Bm-3.2: a Brn-3-related transcription factor with distinctive central nervous system expression and regulation by retinoic acid. Neuron 12:205–218.

    Article  PubMed  CAS  Google Scholar 

  107. Treacy, M.N., X. He, and M.G. Rosenfeld. 1991. I-POU: a POU-domain protein that inhibits neuron-specific gene activation. Nature 350:577–584.

    Article  PubMed  CAS  Google Scholar 

  108. Erkman, L., R.J. McEvilly, L. Luo, A.K. Ryan, F. Hooshmand, S.M. O’Connell, D.H. Rapaport, A.F. Ryan, and M.G. Rosenfeld. 1996. Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature 381:603–606

    Article  PubMed  CAS  Google Scholar 

  109. Gan, L., M. Ziang, L. Zhou, D.S. Wagner, W.H. Klein, and J. Nathans. 1996. POU domain factor Bm-3b is required for the development of a large set of retinal ganglion cells. Proc Natl Acad Sci. USA 93:3920–3925.

    Article  PubMed  CAS  Google Scholar 

  110. McEvilly, R.J. and M.G. Rosenfeld. 1997. Genetically defined roles of class I, III and IV POU domain factors in the development of the mammalian endocrine and nervous systems. Curr Opin Endocrin Diabetes (in press)

    Google Scholar 

  111. Xiang, M., L. Gan, L. Zhou, W.H. Klein, and J. Nathans. 1996. Targeted deletion of the mouse POU domain gene Brn-3a causes selective loss of neurons in the brainstem and trigeminal ganglion, uncoordinated limb movement, and impaired suckling. Proc Natl Acad Sci USA 93:11950–11955.

    Article  PubMed  CAS  Google Scholar 

  112. Altman, J. and S. A. Bayer. 1986. The development of the rat hypothalamus. In Advances in Anatomy, Embryology and Cell Biology, volume 100, (Berlin: Springer-Verlag): 1–178

    Article  CAS  Google Scholar 

  113. Fedtsova, N.G., and E.E. Turner. 1995. Brn-3.0 expression identifies early post-mitotic CNS neurons and sensory neural precursors. Mech Dev 53:291–304.

    Article  PubMed  CAS  Google Scholar 

  114. Tsuchida, T., M. Ensini, S.B. Morton, M. Maldasarre, T. Edlund, T. M. Jessell, S. L. Pfaff. 1994. Topographic Organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell 79: 957–970.

    Article  PubMed  CAS  Google Scholar 

  115. Lewin, B. 1994. On neuronal specificity and the molecular basis of perception. Cell 79: 935–943.

    Article  PubMed  CAS  Google Scholar 

  116. Rubenstein, J.L.R., S. Martinez, K. Shimamura, and L. Puelles. 1994. The embryonic vertebrate forebrain: the prosomeric model. Science 266: 578–580.

    Article  PubMed  CAS  Google Scholar 

  117. Galabov, P. and T.H. Scheibler. 1978. The ultrastructure of the developing neural lobe. Cell Tiss. Res. 189: 313–329.

    CAS  Google Scholar 

  118. Witta, S.E., V.R. Agarwal, S.M. Sato. 1995. XIPOU2, a noggin-inducible gene, has direct neuralizing activity. Development 121:721–730.

    PubMed  CAS  Google Scholar 

  119. de Kok, Y.J., S.M. van der Maarel, M. Bitner-Glindzicz, I. Huber, A.P. Monaco, S. Malcolm, M.E. Pembrey, H.H. Ropers, and F.P. Cremers. 1995. Association between X-linked mixed deafness and mutations in the POU domain gene POU3F4. Science 267:685–658.

    Article  PubMed  Google Scholar 

  120. Finney, M., and G. Ruvkun. 1990. The unc-86 gene product couples cell lineage and cell identity in C. elegans. Cell 63:895–905.

    Article  PubMed  CAS  Google Scholar 

  121. Corcoran, LM, and M. Karvelas. 1994. Oct-2 is required early in T cell-independent B cell activation for G1 progression and for proliferation. Immunity 1:635–645.

    Article  PubMed  CAS  Google Scholar 

  122. Bhat, K.M., S.J. Poole, and P. Schedl. 1995. The miti-mere and pdml genes collaborate during specification of the RP2/sib lineage in Drosophila neurogenesis. Mol Cell Biol 15:4052–4063.

    PubMed  CAS  Google Scholar 

  123. Yeo, S.L., A. Lloyd, K. Kozak, A. Dinh, T. Dick, X. Yang, S. Sakonju, and W. Chia. 1995. On the functional overlap between two Drosophila POU homeo domain genes and the cell fate specification of a CNS neural precursor. Genes & Dev 9:1223–1236.

    Article  CAS  Google Scholar 

  124. Yang, X., S. Yeo, T. Dick, and W. Chia. 1993. The role of a Drosophila POU homeo domain gene in the specification of neural precursor cell identity in the developing embryonic central nervous system. Genes & Dev 7:504–516.

    Article  CAS  Google Scholar 

  125. Mugila, L., L. Jacobson, P. Dikkes, and J.A. Majzoub. 1995. Corticotropin-relasing hormone deficiency reveals major fetal but not adult glucocorticoid need. Nature 373: 424–432.

    Google Scholar 

  126. Schmale, H. and D. Richter. 1984. Single base deletion in the vasopressin gene is the cause of diabetes insipidous in Brattleboror Rats. Nature 303: 705–709.

    Article  Google Scholar 

  127. Lin, S., C.R. Lin, I. Gukovsky, A.J. Lusis, P.E. Sawchenko, and M.G. Rosenfeld. 1993. Molecular basis of the little mouse phenotype and implications for cell type-specific growth. Nature 364: 208–213.

    Article  PubMed  CAS  Google Scholar 

  128. Godfrey, R, J.O. Rahal, W. G. Beamer, n.G. Copeland, N.A. Jenkins, and K.E. Mayo. 1993. GHRH receptor of little mice contains a missense mutation in the extracellular domain that disrupts receptor function. Nature Genetics 4: 227–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schonemann, M.D., Ryan, A.K., Erkman, L., McEvilly, R.J., Bermingham, J., Rosenfeld, M.G. (1998). POU Domain Factors in Neural Development. In: Zingg, H.H., Bourque, C.W., Bichet, D.G. (eds) Vasopressin and Oxytocin. Advances in Experimental Medicine and Biology, vol 449. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4871-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4871-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7210-3

  • Online ISBN: 978-1-4615-4871-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics