Skip to main content

Atherosclerosis, Oxidative Stress, and Endothelial Function

  • Chapter
Oxidative Stress and Vascular Disease

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 224))

Abstract

Atherosclerosis and its associated vascular complications remain a major source of morbidity and mortality in western civilizations. In the United States alone, 5.8 million patients are discharged from the hospital annually with a diagnosis of cardiovascular disease (CVD) and in 1995 CVD claimed over 960,000 lives (1). This represents approximately 41% of all deaths in the United States and places cardiovascular disease as the number one cause of death in the United States, causing more deaths, in fact, than all types of cancer combined (1). In terms of economic costs, cardiovascular disease consumes approximately 20 billion dollars annually in direct health care costs and over 250 billion dollars annually if one includes lost productivity (1). Data from the World Health Organization indicate that continued global economic prosperity is likely to lead to an epidemic of CVD as developing countries acquire Western habits such as increased consumption of meat and tobacco (1). Thus, atherosclerosis is a major public health problem that consumes an enormous amount of resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Heart Association. 1998 Heart and stroke statistical update. Internet. 1998. American Heart Association.

    Google Scholar 

  2. Stary HC, Chandler AB, Glagov S, Guyton JR, Insull WJ, Rosenfeld ME, Schaffer SA, Schwartz CJ, Wagner WD, Wissler RW. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1994;89:2462.

    Article  PubMed  CAS  Google Scholar 

  3. Libby P. Molecular basis of the acute coronary syndromes. Circulation. 1995;91:2844.

    Article  PubMed  CAS  Google Scholar 

  4. Keaney JF, Jr., Vita JA. Atherosclerosis, oxidative stress, and antioxidant protection in endothelium-derived relaxing factor action. Prog Card Dis. 1995;38:129.

    Article  Google Scholar 

  5. Levine GN, Keaney JF, Jr., Vita JA. Cholesterol reduction in cardiovascular disease. Clinical benefits and possible mechanisms. N Engl J Med. 1995;332:512.

    Article  PubMed  CAS  Google Scholar 

  6. Radomski MW, Palmer RM, Moncada S. Comparative pharmacology of endotheliumderived relaxing factor, nitric oxide and prostacyclin in platelets. Br J Pharmacol. 1987;92:181.

    Article  PubMed  CAS  Google Scholar 

  7. Ursini F, Maiorino M, Brigilius-Flohe R, Aumann KD, Roberi A, Schomburg D, Flohe L. Diversity of glutathione peroxidases. Methods Enzymol. 1995;252:38.

    Article  PubMed  CAS  Google Scholar 

  8. Avissar N, Whitin JC, Annen PZ, Palmer IS, Cohen HJ. Antihuman plasma glutathione peroxidase antibodies: immunologic investigations to determine p;asma glutathione peroxidase protein and selenium content in plasma. Blood. 1989;73:318.

    PubMed  CAS  Google Scholar 

  9. Loskutoff DJ, Edgington DS. Synthesis of a fibrinolytic activator and inhibitor by endothelial cells. Proc Natl Acad Sci USA. 1977;74:3903.

    Article  PubMed  CAS  Google Scholar 

  10. Quyyumi AA, Dakak N, Andrews NP, Husain S, Arora S, Gilligan DM, Panza JA, Cannon RO, III. Nitric oxide activity in the human coronary circulation. J Clin Invest. 1995;95:1747.

    Article  PubMed  CAS  Google Scholar 

  11. Garg UC, Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cGMP inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest. 1989;83:1774.

    Article  PubMed  CAS  Google Scholar 

  12. Kubes P, Kurose I, Granger DN. NO donors prevent integrin-induced leukocyte adhesion but not P-selectin-dependent rolling in postischemic venules. Am. J. Physiol. 1994;267:H931.

    PubMed  CAS  Google Scholar 

  13. Azuma H, Ishikawa M, Sekizaki S. Endothelium-dependent inhibition of platelet aggregation. Br J Pharmacol. 1986;88:411.

    Article  PubMed  CAS  Google Scholar 

  14. Radomski MW, Palmer RM, Moncada S: Characterization of the L-arginine:nitric oxide pathway in human platelets. Br J Pharmacol. 1990; 101:325.

    Article  PubMed  CAS  Google Scholar 

  15. Freedman JE, Loscalzo J, Barnard MR, Alpert C, Keaney JF, Jr., Michelson AD: Nitric oxide released from activated platelets inhibits platelet recruitment. J Clin Invest. 1997; 100:350.

    Article  PubMed  CAS  Google Scholar 

  16. Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC. Hypertension in mice lacking the gene for endothelial nitric oxide syntase. Nature. 1995;377:239.

    Article  PubMed  CAS  Google Scholar 

  17. Shesely EG, Maeda N, Kim HS, Desai KM, Krege JH, Laubach VE, Sherman PA, Sessa WC, Smithies O. Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci USA. 1996;93:13176.

    Article  PubMed  CAS  Google Scholar 

  18. Rudic RD, Shesely EG, Maeda N, Smithies O, Segal SS, Sessa WC. Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J Clin Invest. 1998;101:731.

    Article  PubMed  CAS  Google Scholar 

  19. Freedman, JE, Sauter, R, Ault KA, Huang PL, and Loscalzo J. Deficient platelet-derived nitric oxide and enhanced hemostasis in mice lacking the NOS3 gene. Circulation 1998;98:1–4.

    Article  Google Scholar 

  20. Freedman JE, Loscalzo J, Benoit SE, Valeri CR, Barnard MR, Michelson AD. Decreased platelet inhibition by nitric oxide in two brothers with a history of arterial thrombosis. J Clin Invest. 1996;97:979.

    Article  PubMed  CAS  Google Scholar 

  21. Arnold WP, Mittal CK, Katsuki S, Murad F. Nitric oxide activates guanylate cyclase and increases guanosine 3’,5’-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA. 1977;74:3203.

    Article  PubMed  CAS  Google Scholar 

  22. Ignarro LJ, Burke TM, Wood KS, Wolin MS, Kadowitz PJ. Association between cyclic GMP accumulation and acetylcholine-elicited relaxation of bovine intrapulmonary artery. J Pharmacol Exp Ther. 1984;228:682.

    PubMed  CAS  Google Scholar 

  23. Moro MA, Russell RJ, Cellek S, Lizasoain I, Su Y, Darley-Usmar VM, Radomski MW, Moncada S. cGMP mediates the vascular and platelet actions of nitric oxide: Confirmation using an inhibitor of the soluble guanylyl cyclase. Proc Natl Acad Sci USA. 1995;93:1480.

    Article  Google Scholar 

  24. Radomski MW, Palmer RMJ, Moncada S. The role of nitric oxide and cGMP in platelet adhesion to the vascular endothelium. Biochem Biophys Res Commun. 1987;148:1482.

    Article  PubMed  CAS  Google Scholar 

  25. Wink DA, Darbyshire JF, Nims RW, Saavedra JE, Ford PC. Reactions of the bioregulatory agent nitric oxide in oxygenated aqueous media: determination of the kinetics for oxidation and nitrosation by intermediates generated in the NO/O2 reaction. Chem Res Toxicol. 1993;6:23.

    Article  PubMed  CAS  Google Scholar 

  26. Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science. 1992;258:1898.

    Article  PubMed  CAS  Google Scholar 

  27. Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature. 1994;368:850.

    Article  PubMed  CAS  Google Scholar 

  28. Xu L, Eu JP, Meissner G, Stamler JS. Activation of the cardiac calcium release channel (ryonadine receptor by poly-S-nitrosylation. Science. 1998;279:234.

    Article  PubMed  CAS  Google Scholar 

  29. Campbell DL, Stamler JS, Strauss HC: Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J Gen Physiol. 1996;108:277.

    Article  PubMed  CAS  Google Scholar 

  30. Stamler JS, Jia L, Eu JP, McMahon TJ, Demchenko IT, Bonoventura J, Gernert K, Piantadosi CA. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science. 1997;276:2034.

    Article  PubMed  CAS  Google Scholar 

  31. Busconi L, Michel T: Endothelial nitric oxide synthase. N-terminal myristoylation determines subcellular localization. J Biol Chem. 1993;268:8410.

    PubMed  CAS  Google Scholar 

  32. Shaul PW, Smart EJ, Robinson LJ, German Z, Yuhanna IS, Ying Y, Anderson R, Michel T. Acylation targets endothelial nitric-oxide synthase to plasmalemmal caveolae. J Biol Chem. 1996;271:6518.

    Article  PubMed  CAS  Google Scholar 

  33. Garcia-Cardena G, Oh P, Liu J, Schnitzer JE, Sessa WC. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. Proc Natl Acad Sci USA. 1996;93:6448.

    Article  PubMed  CAS  Google Scholar 

  34. Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP. Identification of peptide and protein ligands for the caveolin-scaffoliding domain, implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem. 1997;272:6525.

    Article  PubMed  CAS  Google Scholar 

  35. Michel JB, Feron O, Sase K, Prabhakar P, Michel T. Caveolin versus calmodulin. counterbalancing allosteric modulators of endothelial nitric oxide synthase. J Biol Chem. 1997;272:25907.

    Article  PubMed  CAS  Google Scholar 

  36. Garcia-Cardena G, Fan R, Shah V, Sorrentino R, Cirino G, Papapetropoulos A, Sessa WC. Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature. 1998;392:821.

    Article  PubMed  CAS  Google Scholar 

  37. Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, Alexander RW, Ganz P. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med. 1986;315:1046.

    Article  PubMed  CAS  Google Scholar 

  38. Nitenberg A, Valensi P, Sachs R, Dali M, Aptecar E, Attali JR. Impaiment of coronary vascular reserve and ACh-induced coronary vasodilation in diabetic patients with angiographically normal coronary arteries and normal left ventricular systolic function. Diabetes. 1993;42:1017.

    Article  PubMed  CAS  Google Scholar 

  39. Panza JA, Casino PR, Kilcoyne CM, Quyyumi AA. Role of endothelium-derived nitric oxide in the abnormal endothelium-dependent vascular relaxation of patients with essential hypertension. Circulation. 1993;87:1468.

    Article  PubMed  CAS  Google Scholar 

  40. Anderson TJ, Uehata A, Gerhard MD, Meredith IT, Knab S, Delagrange D, Lieberman EH, Gamz P, Creager MA, Yeung AC, Selwyn AP. Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol. 1995;26:1235.

    Article  PubMed  CAS  Google Scholar 

  41. Celermajer DS, Sorensen K, Ryalls M, Robinson J, Thomas O, Leonard JV, Deanfield JE. Impaired endothelial function occurs in the systemic arteries of children with homozygous homocystinuria but not in their heterozygous parents. J Am Coll Cardiol. 1993;22:854.

    Article  PubMed  CAS  Google Scholar 

  42. Creager MA, Cooke JP, Mendelsohn ME, Gallagher SJ, Coleman SM, Loscalzo J, Dzau VJ. Impaired vasodilation of forearm resistance vessels in hypercholesterolemic humans. J Clin Invest. 1990;86:228.

    Article  PubMed  CAS  Google Scholar 

  43. Johnstone MT, Gallagher MT, Scales KM, Cusco JA, Lee B, Creagher M. Endotheliumdependent vasodilation is impaired in patients with insulin-dependent diabetes mellitus. Circulation. 1992;86:1–618.

    Article  Google Scholar 

  44. Vita JA, Treasure CB, Nabel EG, McLenachan JM, Fish RD, Yeung AC, Vekshtein VI, Selwyn AP, Ganz P. Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation. 1990;81:491.

    Article  PubMed  CAS  Google Scholar 

  45. Celermajer DS, Sorensen KE, Bull C, Ribinson J, Deanfield JE. Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interaction. J Am Coll Cardiol. 1994;24:1468.

    Article  PubMed  CAS  Google Scholar 

  46. Kugiyama K, Yasue H, Ihgushi M, Motoyama T, Dawano H, Inobe Y, Hirachima O, Sugiyama S. Deficiency in nitric oxide bioactivity in epicardial coronary arteries of cigarette smokers. J Am Coll Cardiol. 1996;28:1161.

    Article  PubMed  CAS  Google Scholar 

  47. Clarkson P, Celermajer DS, Powe AJ, Donald AE, Henry RMA, Deanfield JE. Endotheliumdependent dilatation is impaired in young healthy subjects with a family history of premature coronary disease. Circulation. 1997;96:3378.

    Article  PubMed  CAS  Google Scholar 

  48. Diaz M, Frei B, Vita JA, Keaney JF, Jr. Antioxidants and atherosclerotic heart disease. N Engl J Med. 1997;337:408.

    Article  PubMed  CAS  Google Scholar 

  49. Heistad DD, Armstrong ML, Marcus ML, Piegors KJ, Mark AL. Augmented responses to vasoconstrictor stimuli in hypercholesterolemic and atherosclerotic monkeys. Circ Res. 1984;54:711.

    Article  PubMed  CAS  Google Scholar 

  50. Henry PD, Yokoyama M. Supersensitivity of atherosclerotic rabbit aorta to ergonovine mediated by a serotonergic mechanism. J Clin Invest. 1980;66:306.

    Article  PubMed  CAS  Google Scholar 

  51. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288:373.

    Article  PubMed  CAS  Google Scholar 

  52. Jayakody RL, Senaratne MPJ, Thomson ABR, Kappagoda CT. Cholesterol feeding impairs endothelium-dependent relaxation of rabbit aorta. Can J Physiol Pharmacol. 1985;63:1206.

    Article  PubMed  CAS  Google Scholar 

  53. Freiman PC, Mitchell GG, Heistad DD, Armstrong ML, Harrison DG. Atherosclerosis impairs endothelium-dependent vascular relaxation to acetylcholine and thrombin in primates. Circ Res. 1986;58:783.

    Article  PubMed  CAS  Google Scholar 

  54. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA. 1987;84:9265.

    Article  PubMed  CAS  Google Scholar 

  55. Minor RL, Jr., Myers PR, Guerra R, Jr., Bates JN, Harrison DG. Diet-induced atherosclerosis increases the release of nitrogen oxides from rabbit aorta. J Clin Invest. 1990;86:2109.

    Article  PubMed  CAS  Google Scholar 

  56. Ohara Y, Peterson TE, Harrison DG. Hypercholesterolemia increases endothelial Superoxide anion production. J Clin Invest. 1993;91:2546.

    Article  PubMed  CAS  Google Scholar 

  57. Keaney JF, Jr., Xu A, Cunningham D, Jackson T, Frei B, Vita JA. Dietary probucol preserves endothelial function in cholesterol-fed rabbits by limiting vascular oxidative stress and Superoxide generation. J Clin Invest. 1995;95:2520.

    Article  PubMed  CAS  Google Scholar 

  58. Kissner R, Nauser T, Bugnon P, Lye PG, Koppenol WH. Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis. Chem Res Toxicol. 1997;10:1285.

    Article  PubMed  CAS  Google Scholar 

  59. Leeuwenburgh C, Hansen P, Shaish A, Holloszy JO, Heinecke JW. Markers of protein oxidation by hydroxyl radical and reactive nitrogen species in tissues of aging rats. Am J Physiol. 1998;274:R453.

    PubMed  CAS  Google Scholar 

  60. Ischiropoulos H, Zhu L, Beckman JS. Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys. 1992;298:446.

    Article  PubMed  CAS  Google Scholar 

  61. Mayer B, Schrammel A, Klatt P, Koesling D, Schmidt K. Peroxynitrite-induced accumulation of cyclic GMP in endothelial cells and stimulation of purified soluble guanylyl cyclase. Dependence on glutathione and possible role of S-nitrosation. J Biol Chem. 1995;270:17355.

    Article  PubMed  CAS  Google Scholar 

  62. Tarpey MM, Beckman JS, Ischiropoulos H, Gore JZ, Brock TA. Peroxynitrite stimulates vascular smooth muscle cell cyclic GMP synthesis. FEBS Lett. 1995;364:314.

    Article  PubMed  CAS  Google Scholar 

  63. Rosen GM, Freeman BA. Detection of Superoxide generated by endothelial cells. Proc Natl Acad Sci USA. 1984;81:7269.

    Article  PubMed  CAS  Google Scholar 

  64. Rubanyi GM, Vanhoutte PM. Superoxide anions and hyperoxia inactivate endotheliumderived relaxing factor. Am J Physiol. 1986;250:H822.

    PubMed  CAS  Google Scholar 

  65. Gryglewski RJ, Palmer RM, Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature. 1986;320:454.

    Article  PubMed  CAS  Google Scholar 

  66. Ignarro LJ, Byrns RE, Buga GM, Wood KS, Chaudhuri G. Pharmacological evidence that endothelium-derived relaxing factor is nitric oxide: use of pyrogallol and Superoxide dismutase to study endothelium dependent and nitric oxide elicited vascular smooth muscle relaxation. J Pharmacol Exp Ther. 1988;244:181.

    PubMed  CAS  Google Scholar 

  67. Heikkila RE, Cohen G. The inactivation of copper-zinc Superoxide dismutase by diethyldithiocarbamate, in Anonymous Superoxide and Superoxide Dismutases. New York, Academic Press, 1977, p 367.

    Google Scholar 

  68. Omar HA, Cherry PD, Mortelliti MP, Burke-Wolin T, Wolin MS. Inhibition of coronary artery Superoxide dismutase attenuates endothelium-dependent and-independent nitrovasodilator relaxation. Circ Res. 1991;69:601.

    Article  PubMed  CAS  Google Scholar 

  69. Mugge A, Elwell JK, Peterson TE, Harrison DG. Release of intact endothelium-derived relaxing factor depends on endothelial Superoxide dismutase activity. Am J Physiol. 1991;260:C219.

    PubMed  CAS  Google Scholar 

  70. Mulsch A, Mordvintcev P, Bassenge E, Jung F, Clement B, Busse R. In vivo spin trapping of glyceryl trinitrate-derived nitric oxide in rabbit blood vessels and organs. Circulation. 1995;92:1876.

    Article  PubMed  CAS  Google Scholar 

  71. Sarvazyan N, Askari A, Klevay LM, Huang WH. Role of intracellular SOD in oxidantinduced injury to normal and copper-deficient cardiac myocytes. Am J Physiol. 1995;268:H1115.

    PubMed  CAS  Google Scholar 

  72. Lynch SM, Frei B, Morrow JD, Roberts LJ, II, Xu A, Jackson T, Reyna R, Klevay LM, Vita JA, Keaney JF, Jr. Vascular Superoxide dismutase deficiency impairs endothelial vasodilator function through direct inactivation of nitric oxide and increased lipid peroxidation. Arterioscler Thromb Vasc Biol. 1997;17:2975.

    Article  PubMed  CAS  Google Scholar 

  73. Schuschke DA, Ree MWR, Saari JT, Miller FN: Copper deficiency alters vasodilation in the rat cremaster muscle microcirculation. J Nutr. 1992; 122:1547.

    PubMed  CAS  Google Scholar 

  74. Abrahamsson T, Brandt U, Marklund SL, Sjoqvist PO. Vascular bound recombinant extracellular Superoxide dismutase type C protects against the detrimental effects of Superoxide radicals on endothelium-dependent arterial relaxation. Circ Res. 1992;70:264.

    Article  PubMed  CAS  Google Scholar 

  75. Mugge A, Elwell JH, Peterson TE, Hofmeyer TG, Heistad DD, Harrison DG. Chronic treatment with polyethylene-glycolated Superoxide dismutase partially restores endotheliumdependent vascular relaxations in cholesterol-fed rabbits. Circ Res. 1991;69:1293.

    Article  PubMed  CAS  Google Scholar 

  76. White CR, Brock TA, Chang LY, Crapo J, Briscoe P, Ku D, Bradley WA, Gianturco SH, Gore J, Freeman BA, Tarpey MM. Superoxide and peroxynitrite in atherosclerosis. Proc Natl Acad Sci USA. 1994;91:1044.

    Article  PubMed  CAS  Google Scholar 

  77. Pagano PJ, Ito Y, Tornheim K, Gallop P, Tauber AI, Cohen RA. An NADPH oxidase Superoxide generating system in rabbit aorta. Am J Physiol. 1995;268:H2274.

    PubMed  CAS  Google Scholar 

  78. Pagano PJ, Clark J, Cifuentes-Pagano ME, Clark SM, Callis GM, Quinn MT. Localization of a constitutively active, phagocyte-like NADPH oxidase in rabbit aortic adventitia: enhancement by angiotensin II. Proc Natl Acad Sci USA. 1997;94:14483.

    Article  PubMed  CAS  Google Scholar 

  79. Mojazzab H, Kaminski PM, Wolin MS: NADH oxidoreductase is a major source of Superoxide anion in bovine coronary artery endothelium. Am J Physiol. 1994;266:H2568.

    Google Scholar 

  80. Kukreja RC, Kontos HA, Hess ML, Ellis EF. PGH synthase and lipoxygenase generate Superoxide in the presence of NADH or NADPH. Circ Res. 1986;59:612.

    Article  PubMed  CAS  Google Scholar 

  81. Paler-Martinez A, Panus PC, Chumley PH, Ryan US, Hardy MM, Freeman BA. Endogenous xanthine oxidase does not significantly contribute to vascular endothelial production of reactive oxygen species. Arch Biochem Biophys. 1994;311:79.

    Article  PubMed  CAS  Google Scholar 

  82. White CR, Darley-Usmar V, Berrington WR, McAdams M, Gore JZ, Thompson JA, Parks DA, Tarpey MM, Freeman BA. Circulating plasma xanthine oxidase contributes to vascular dysfunction in hypercholesterolemic rabbits. Proc Natl Acad Sci USA. 1996;93:8745.

    Article  PubMed  CAS  Google Scholar 

  83. Cardillo C, Kilcoyne CM, Cannon RO, III, Quyyumi AA, Panza JA. Xanthine oxidase inhibition with oxypurinol improves endothelai fasodilator function in hypercholesterolemic but not in hypertensive patients. Hypertension. 1997;30:57.

    Article  PubMed  CAS  Google Scholar 

  84. Pou S, Pou WS, Bredt DS, Snyder SH, Rosen GM. Generation of Superoxide by purified brain nitric oxide synthase. J Biol Chem. 1992;267:24173.

    PubMed  CAS  Google Scholar 

  85. Vasquez-Vivar J, Kalyanaraman B, Martasek P, Hogg N, Masters BS, Karoui H, tordo P, Pritchard KA, Jr. Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci USA. 1998;95:9220.

    Article  PubMed  CAS  Google Scholar 

  86. Xia Y, Roman LJ, Masters BS, Zweier JL. Inducible nitric-oxide synthase generates Superoxide from the reductase domain. J Biol Chem. 1998;273:22635.

    Article  PubMed  CAS  Google Scholar 

  87. Pritchard KA, Jr., Groszek L, Smalley DM, Sessa WC, Wu M, Villalon P, Wolin MS, Stemerman MB. Native low-density lipoprotein increases endothelial cell nitric oxide synthase generation of Superoxide anion. Circ Res. 1995;77:510.

    Article  PubMed  CAS  Google Scholar 

  88. Stroes E, Kastelein J, Cosentino F, Erkelens W, Wever R, Koomans H, Luscher T, Rabelink T. Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J Clin Invest. 1996;99:41.

    Article  Google Scholar 

  89. Verhaar MC, Wever RM, Kastelein JJ, van Dam T, Koomans HA, Rabelink TJ. 5-methyltetrahydrofolate, the active form of folic acid, restores endothelial function in familial hypercholesterolemia. Circulation. 1998;97:237.

    Article  PubMed  CAS  Google Scholar 

  90. Kagota S, Yamaguchi Y, Shinozuka K, Kunitomo M. Mechanisms of impairment of endothelium-dependent relaxation to acetylcholine in Watanabe heritable hyperlipidemic rabbit aortas. Clin Exper Pharmacol Physiol. 1998;25:104.

    Article  CAS  Google Scholar 

  91. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and Superoxide. Proc Natl Acad Sci USA. 1990;87:1620.

    Article  PubMed  CAS  Google Scholar 

  92. Saran M, Michel C, Bors W: Reaction of NO with O2-. Implications for the action of endothelium-derived relaxing factor (A2RF). Free Radie Res Commun. 1990;10:221.

    Article  CAS  Google Scholar 

  93. Beckman JS, Crow JP. Pathological implications of nitric oxide, Superoxide, and peroxynitrite formation. Biochem Soc Trans. 1993;21:330.

    PubMed  CAS  Google Scholar 

  94. Moreno JJ, Pryor WA: Inactivation of a-1-proteinase inhibitor by peroxynitrite. Chem Res Toxicol. 1992;5:425.

    Article  PubMed  CAS  Google Scholar 

  95. Graham A, Hogg N, Kalyanaraman B, O’Leary V, Darley-Usmar V, Moncada S: Peroxynitrite modification of low-density lipoprotein leads to recognition by the macrophage scavenger receptor. FEBS Lett. 1993;330:181.

    Article  PubMed  CAS  Google Scholar 

  96. Landino LM, Crews BC, Timmons MD, Morrow JD, Marnett LJ. Peroxynitrite, the couling product of nitric oxide and Superoxide, activates Prostaglandin biosynthesis. Proc Natl Acad Sci U.S.A. 1996;93:15069.

    Article  PubMed  CAS  Google Scholar 

  97. Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin JC, Smith CD, Beckman JS. Peroxynitritemediated tyrosine nitration catalyzed by Superoxide dismutase. Arch Biochem Biophys. 1992;298:431.

    Article  PubMed  CAS  Google Scholar 

  98. Buettner GR. The pecking order of free radicals and antioxidants: lipid peroxidation, alphatocopherol, and ascorbate. Arch Biochem Biophys. 1993;300:535.

    Article  PubMed  CAS  Google Scholar 

  99. Lynch SM, Frei B: Mechanisms of copper-and iron-dependent oxidative modification of human low-density lipoprotein. J Lipid Res. 1993;34:1745.

    PubMed  CAS  Google Scholar 

  100. Haber F, Weiss J: The catalytic decomposition of hydrogen peroxide by iron salts. Proc Roy Soc London 1934,147:332.

    Article  CAS  Google Scholar 

  101. Ehrenwald E, Chisolm GM, Fox PL. Intact human ceruloplasmin oxidatively modifies low density lipoprotein. J Clin Invest. 1994;93:1493.

    Article  PubMed  CAS  Google Scholar 

  102. Smith C, Mitchinson MJ, Aruoma OI, Halliwell B. Stimulation of lipid peroxidation and hydroxyl radical generation by the contents of human atherosclerotic lesions. Biochem J 1992;286:901.

    PubMed  CAS  Google Scholar 

  103. Semenkovich CF, Heinecke JW. The mystery of diabetes and atherosclerosis: time for a new plot. Diabetes. 1997;46:327.

    Article  PubMed  CAS  Google Scholar 

  104. Heinecke JW, Li W, Francis GA, Goldstein JA. Tyrosyl radical generated by myeloperoxidase catalyzes the oxidative cross-linking of proteins. J Clin Invest. 1993;91:2866.

    Article  PubMed  CAS  Google Scholar 

  105. Heinecke JW: Pathways for oxidation of low density lipoprotein by meloperoxidase: tyrosyl radical, reactive aldehydes, hypochlorous acid, and molecular chlorine. Biofactors 1997;6:145.

    Article  PubMed  CAS  Google Scholar 

  106. Daugherty A, Rateri DL, Dunn JL, Heinecke JW. Human atherosclerotic lesions contain myeloperoxidase, a phagocyte enzyme that catalyzes oxidation reactions. Circulation. 1993;88:1-32.

    Google Scholar 

  107. Hazen SL, Heinecke JW. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest. 1997;99:2075.

    Article  PubMed  CAS  Google Scholar 

  108. Folcik VA, Nivar-Aristy RA, Krajewski LP, Cathcart MK: Lipoxygenase contributes to the oxidation of lipids in human atherosclerotic plaques. J Clin Invest. 1995;96:504.

    Article  PubMed  CAS  Google Scholar 

  109. Loscalzo J. The oxidant stress of hyperhomocyst(e)inemia. J Clin Invest. 1996;98:5.

    Article  PubMed  CAS  Google Scholar 

  110. Malle E, Hazell L, Stocker R, Sattler W, Esterbauer H, Waeg G: Immunologic detection and measurement of hypochlorite-modified LDL with specific monoclonal antibodies. Arterioscler Thromb Vasc Biol. 1995;15:982.

    Article  PubMed  CAS  Google Scholar 

  111. Wagner BA, Buettner GR, Burns CP. Free radical-mediated lipid peroxidation in cells: oxidizability is a function of cell lipid bis-allylic hydrogen content. Biochemistry. 1994;33:4449.

    Article  PubMed  CAS  Google Scholar 

  112. Keaney JF, Jr., Frei B. Antioxidant protection of low-density lipoprotein and its role in the prevention of atherosclerotic vascular disease, in Frei B (ed): Natural antioxidants in human health and disease. San Diego, Academic Press, 1994, p 303.

    Google Scholar 

  113. Padmaja S, Huie RE: The reaction of nitric oxide with organic peroxyl radicals. Biochem Biophys Res Commun. 1993;195:539.

    Article  PubMed  CAS  Google Scholar 

  114. Rubbo H, Radi R, Trujillo M, Telleri R, Kalyanaraman B, Barnes S, Kirk M, Freeman BA: Nitric oxide regulation of Superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J Biol Chem. 1994;269:26066.

    PubMed  CAS  Google Scholar 

  115. Ylä-Herttuala S, Palinski W, Rosenfeld ME, Parthasarathy S, Carew TE, Butler S, Witztum JL, Steinberg D: Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest. 1989;84:1086.

    Article  PubMed  Google Scholar 

  116. Chin JH, Azhar S, Hoffman BB: Inactivation of endothelium-derived relaxing factor by oxidized lipoproteins. J Clin Invest. 1992;89:10.

    Article  PubMed  CAS  Google Scholar 

  117. Liao JK, Shin WS, Lee WY, Clark SL. Oxidized low-density lipoprotein decreases the expression of endothelial nitric oxide synthase. J Biol Chem. 1995;270:319.

    Article  PubMed  CAS  Google Scholar 

  118. Ohgushi M, Kugiyama K, Fukunaga K, Murohara T, Sugiyama S, Miyamoto E, Yasue H: Protein kinase C inhibitors prevent impairment of endothelium-dependent relaxation by oxidatively modified LDL. Arterioscler Thromb. 1993;13:1525.

    Article  PubMed  CAS  Google Scholar 

  119. Kugiyama K, Kerns SA, Morrisett JD, Roberts R, Henry PD: Impairment of endotheliumdependent arterial relaxation by lysolecithin in modified low-density lipoproteins. Nature. 1990;344:160.

    Article  PubMed  CAS  Google Scholar 

  120. Liu J, Garcia-Cardena G, Sessa WC. Palmitoylation of endothelial nitric oxide synthase is necessary for optimal stimulatted release of nitric oxide: implications for caveolae localization. Biochemistry. 1996;35:13277.

    Article  PubMed  CAS  Google Scholar 

  121. Wink DA, Hanbauer I, Krishna MC, DeGraff W, Gamson J, Mitchell JB. Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci USA. 1993;90:9813.

    Article  PubMed  CAS  Google Scholar 

  122. Hogg N, Kalyanaraman B, Joseph J, Struck A, Parthasarathy S. Inhibition of low-density lipoprotein oxidation by nitric oxide. Potential role in atherogenesis. FEBS Lett. 1993;334:170.

    Article  PubMed  CAS  Google Scholar 

  123. Zembowicz A, Hatchett RJ, Jakubowski AM, Gryglewski RJ. Involvement of nitric oxide in the endothelium-dependent relaxation induced by hydrogen peroxide in rabbit aorta. Br J Pharmacol. 1993;110:151.

    Article  PubMed  CAS  Google Scholar 

  124. Okuma M, Steiner M, Bladini MG. Studies on lipid peroxides in platelets. II. Effect of aggregating agents and platelet antibody. J Lab Clin Med. 1971;77:728.

    PubMed  CAS  Google Scholar 

  125. Freedman JE, Frei B, Welch GN, Loscalzo J. Glutathione peroxidase potentiates the inhibition of platelet function by S-nitrosothiols. J Clin Invest. 1995;96:394.

    Article  PubMed  CAS  Google Scholar 

  126. Esterbauer H, Striegl G, Puhl H, Oberreither S, Rotheneder M, el-Saadani M, Jürgens J. The role of vitamin E and carotenoids in preventing oxidation of low density lipoprotein. Ann NY Acad Sci. 1989;570:254.

    Article  PubMed  CAS  Google Scholar 

  127. Jialal I, Norkus EP, Cristol L, Grundy SM. Beta-carotene inhibits the oxidative modification of low density lipoprotein. Biochim Biophys Acta. 1991;1086:134.

    Article  PubMed  CAS  Google Scholar 

  128. Gaziano JM, Hatta A, Flynn M, Johnson EJ, Krinsky NI, Ridker PM, Hennekens CH, Frei B. Supplementation with beta-carotene in vivo and in vitro does not inhibit low density lipoprotein (LDL) oxidation. Atherosclerosis 1995;112:187.

    Article  PubMed  CAS  Google Scholar 

  129. Verbeuren TJ, Jordaens FH, Zonnekeyn LL, Van Hove CE, Coene MC, Herman AG. Effect of hypercholesterolemia on vascular reactivity in the rabbit. Circ Res. 1986;58:553.

    Article  Google Scholar 

  130. Keaney JF, Jr., Gaziano JM, Xu A, Frei B, Curran-Celantano J, Shwaery GT, Loscalzo J, Vita JA. Dietary antioxidants preserve endothelium-dependent vessel relaxation in cholesterol-fed rabbits. Proc Natl Acad Sci USA. 1993;90:11880.

    Article  PubMed  CAS  Google Scholar 

  131. Andersson TLG, Matz J, Ferns GAA, Änggård EE. Vitamin E reverses cholesterol-induced endothelial dysfunction in the rabbit coronary circulation. Atherosclerosis 1994;111:39.

    Article  PubMed  CAS  Google Scholar 

  132. Stewart-Lee AL, Forster LA, Nourooz-Zadeh J, Ferns GAA, Änggård EE. Vitamin E protects against impairment of endothelium-mediated relaxations in cholesterol-fed rabbits. Arterioscler Thromb. 1994;14:494.

    Article  PubMed  CAS  Google Scholar 

  133. Lutz M, Cortez J, Vinet R. Effects of dietary fats, alpha-tocopherol and beta-carotene supplementation on aortic ring segment responses in the rat. Int J Vit Nutr Res 1995;65:225.

    CAS  Google Scholar 

  134. Raij L, Jagy J, Coffee K, DeMaster EG. Hypercholesterolemia promotes endothelial dysfunction in vitamin E-and selenium-deficient rats. Hypertension. 1993;22:56.

    Article  PubMed  CAS  Google Scholar 

  135. Keegan A, Walbank H, Cotter MA, Cameron NE. Chronic vitamin E treatment prevents defective endothelium-dependent relaxation in diabetic rat aorta. Diabetologia 1995;38:1475.

    Article  PubMed  CAS  Google Scholar 

  136. Karasu C, Ozansoy G, Bozkurt O, Erdogan D, Omeroglu S. Changes in isoprenaline-induced endothelium-dependent and-independent relaxations of aorta in long-term STZ-diabetic rats: reversal effect of dietary vitamin E. Gen Pharm 1997;29:561.

    Article  CAS  Google Scholar 

  137. Karasu C, Ozansoy G, Bozkurt O, Erdogan D, Omeroglu S. Antioxidant and triglyceridelowering effects of vitamin E associated with the prevention of abnormalities in the reactivity and morphology of aorta from streptozotocin-diabetic rats. Antioxidants in Diabetes-Induced Complications (ADIC) Study Group. Metabolism 1997;46:872.

    Article  PubMed  CAS  Google Scholar 

  138. Rosen P, Ballhausen T, Stockklauser K. Impairment of endothelium dependent relaxation in the diabetic rat heart: mechanisms and implications. Diabetes Res Clin Pract 1996;31 Suppl:S143.

    Article  PubMed  Google Scholar 

  139. Gopaul NK, Änggård EE, Mallet AI, Betteridge DJ, Wolff SP, Nourooz-Zadeh J. Plasma 8-epi-PGF2alpha levels are elevated in individuals with non-insulin dependent diabetes mellitus. FEBS Lett. 1995;368:225.

    Article  PubMed  CAS  Google Scholar 

  140. Davi G, Ciabottoni G, Consoli A, Messetti A, Falco A, Santarone S, Pennese E, Vitacolonna E, Bucciarelli T, Costantini F, Capani F, Patrono C. In vivo formation of 8-iso-prostaglandin F2alpha and platelet activation in diabetes mellitus, effects of improved metabolic control. Circulation. 1998;98:in press

    Google Scholar 

  141. Keaney JF, Jr., Loscalzo J. Oxidative stress, diabetes, and platelet activation. Circulation. 1999;98:in press

    Google Scholar 

  142. Dieber-Rotheneder M, Puhl H, Waeg H, Striegl G, Esterbauer H. Effect of oral supplementation with D-alpha-tocopherol on the vitamin E content of human low density lipoproteins and resistance to oxidation. J Lipid Res. 1991;32:1325.

    PubMed  CAS  Google Scholar 

  143. Keaney JF, Jr., Gaziano JM, Xu A, Frei B, Curran-Celentano J, Shwaery GT, Loscalzo J, Vita JA. Low-dose α-tocopherol improves and high-dose α-tocopherol worsens endothelial vasodilator function in cholesterol-fed rabbits. J Clin Invest. 1994;93:844.

    Article  PubMed  Google Scholar 

  144. Suarna C, Dean RT, May J, Stocker R: Human atherosclerotic plaque contains both oxidized lipids and relatively large amounts of α-tocopherol and ascorbate. Arterioscler Thromb Vasc Biol. 1995;15:1616.

    Article  PubMed  CAS  Google Scholar 

  145. Keaney JF, Jr., Guo Y, Cunningham D, Shwaery GT, Xu A, Vita JA. Vascular incorporation of α-tocopherol prevents endothelial dysfunction due to oxidized LDL by inhibiting protein kinase C stimulation. J Clin Invest. 1996;98:386.

    Article  PubMed  CAS  Google Scholar 

  146. Williams B, Schrier RW. Characterization of glucose-induced in situ protein kinase C activity in cultured vascular smooth muscle cells. Diabetes. 1992;41:1464.

    Article  PubMed  CAS  Google Scholar 

  147. Jay MT, Chirico S, Siow RC, Bruckdorfer KR, Jacobs M, Leake DS, Pearson JD, Mann GE. Modulation of vascular tone by low density lipoproteins: effects on L-arginine transport and nitric oxide synthesis. Exp Physiol 1997;82:349.

    PubMed  CAS  Google Scholar 

  148. Kugiyama K, Ohgushi M, Sugiyama S, Murohara T, Fukunaga K, Miyamoto E, Yasue H. Lysophosphatidylcholine inhibits surface receptor-mediated intracellular signals in endothelial cells by a pathway involving protein kinase C activation. Circ Res. 1992;71:1422.

    Article  PubMed  CAS  Google Scholar 

  149. Sugiyama S, Kugiyama K, Ohgushi M, Fujimoto K, Yasue H. Lysophosphatidylcholine in oxidized low-density lipoprotein increases endothelial susceptibility to polymorphonuclear leukocyte-induced endothelial dysfunction in porcine coronary arteries: role of protein kinase C. Circ Res. 1994;74:565.

    Article  PubMed  CAS  Google Scholar 

  150. Flavahan NA, Shimokawa H, Vanhoutte PM. Inhibition of endothelium-dependent relaxations by phorbol myristate acetate in canine coronary arteries: role of a pertussus toxin-sensitive G-protein. J Pharmacol Exp Ther. 1991;256:50.

    PubMed  CAS  Google Scholar 

  151. Boscoboinik D, Szewczyk A, Hensey C, Azzi A. Inhibition of cell proliferation by a-tocopherol. J Biol Chem. 1991;266:6188

    PubMed  CAS  Google Scholar 

  152. Freedman JE, Farhat JH, Loscalzo J, Keaney JF, Jr. α-Tocopherol inhibits aggregation of human platelets by a protein kinase C-dependent mechanism. Circulation. 1996;94:2434.

    Article  PubMed  CAS  Google Scholar 

  153. Marshall FN: Pharmacology and toxicology of probucol. Artery 1982;10:7.

    PubMed  CAS  Google Scholar 

  154. Shaish A, Daugherty A, O’Sullivan F, Schonfeld G, Heinecke JW: Beta-carotene inhibits atherosclerosis in hypercholesterolemic rabbits. J Clin Invest. 1995;96:2075.

    Article  PubMed  CAS  Google Scholar 

  155. Parthasarathy S, Young SG, Witztum JL, Pittman RC, Steinberg D: Probucol inhibits oxidative modification of low density lipoprotein. J Clin Invest. 1986;77:641.

    Article  PubMed  CAS  Google Scholar 

  156. Carew TE, Schwenke DC, Steinberg D: Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sci USA. 1987;84:7725.

    Article  PubMed  CAS  Google Scholar 

  157. Kita T, Nagano Y, Yokode M, Ishii K, Kume N, Ooshima A, Yoshida H, Kawai C: Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Proc Natl Acad Sci USA. 1987;84:5928.

    Article  PubMed  CAS  Google Scholar 

  158. Sasahara M, Raines EW, Chait A, Carew TE, Steinberg D, Wahl PW, Ross R: Inhibition of hypercholesterolemia-induced atherosclerosis in the nonhuman primate by probucol. Is the extent of atherosclerosis related to resistance of LDL to oxidation? J Clin Invest. 1994;94:155.

    Article  PubMed  CAS  Google Scholar 

  159. Zhang SH, Reddick RL, Avdievich E, Surles LK, Jones RG, Reynolds JB, Quarfordt SH, Maeda N. Paradoxical enhancement of atherosclerosis by probucol treatment in apolipoprotein E-deficient mice. J Clin Invest. 1997;99:2858.

    Article  PubMed  CAS  Google Scholar 

  160. Simon BC, Haudenschild CC, Cohen RA. Preservation of endothelium-dependent relaxation in atherosclerotic rabbit aorta by probucol. J Cardiovasc Pharmacol 1993;21:893.

    Article  PubMed  CAS  Google Scholar 

  161. Inoue N, Ohara Y, Fukai T, Harrison DG, Nishida K: Probucol improves endothelialdependent relaxation and decreases vascular Superoxide production in cholesterol-fed rabbits. Am J Med Sci. 1998;315:242.

    Article  PubMed  CAS  Google Scholar 

  162. Hoshida S, Yamashita N, Igarashi J, Aoki K, Kuzuya T, Hori M. Long-term probucol treatment reverses the severity of myocardial injury in watanabe heritable hyperlipidemic rabbits. Arterioscler Thromb Vasc Biol 1997;17:2801.

    Article  PubMed  CAS  Google Scholar 

  163. Tesfamariam B, Cohen RA. Free radicals mediate endothelial cell dysfunction caused by elevated glucose. Am J Physiol. 1992;263:H321.

    PubMed  CAS  Google Scholar 

  164. Flavahan NA. Atherosclerosis or lipoprotein-induced endothelial dysfunction: potential mechanisms underlying reduction in A2RF/nitric oxide activity. Circulation. 1992;85:1927.

    Article  PubMed  CAS  Google Scholar 

  165. McDowell IFW, Brennan GM, McEneny J, Young IS, Nicholls DP, McVeigh GE, Bruce I, Trimble ER, Johnston GD: The effect of probucol and vitamin E treatment on the oxidation of low-density lipoprotein and forearm vascular responses in humans. Eur J Clin Invest. 1994;24:759.

    Article  PubMed  CAS  Google Scholar 

  166. Elliott TG, Barth JD, Mancini J. Effects of vitamin E on endothelial function in men after myocardial infarction. Am J Cardiol. 1995;76:1188.

    Article  PubMed  CAS  Google Scholar 

  167. Gilligan DM, Sack MN, Guetta V, Casino PR, Quyyumi AA, Rader DJ, Panza JA, Cannon RO, II. Effect of antioxidant vitamins on low density lipoprotein oxidation and impaired endothelium-dependent vasodilation on patients with hypercholesterolemia. J Am Coll Cardiol. 1994;24:1611.

    Article  PubMed  CAS  Google Scholar 

  168. Koh KK, Blum A, Schenke WH, Hathaway L, Mincemoyer R, Panza JA, Cannon RO, III. Vitamin E improves endothelium-dependent vasodilator responsiveness comparable to estrogen in postmenopausal women. Circulation 1998;98:111-3468.

    Google Scholar 

  169. Motoyama T, Kugiyama K, Doi H, Kawano K, Moriyama Y, Sakamoto T, Takazoe K, Yoshimura M, Hirai N, Ota Y. Vitamin E treatment improves impairment of endotheliumdependent vasodilation in patients with high remnant lipoprotein levels. Circulation 1998;98:111-904.

    Google Scholar 

  170. Wendel A, Cikryt P. The level and half-life of glutathione in human plasma. FEBS Lett. 1980;120:209.

    Article  PubMed  CAS  Google Scholar 

  171. Bray TM, Taylor CG. Tissue glutathione, nutrition, and oxidative stress. Can J Physiol Pharmacol. 1993;71:746.

    Article  PubMed  CAS  Google Scholar 

  172. Bergsten P, Yu R, Kehrl J, Levine M. Ascorbic acid transport and distribution in human B lymphocytes. Arch Biochem Biophys. 1994;317:208.

    Article  Google Scholar 

  173. Martensson J, Han J, Griffith EW, Meister A. Glutathione ester delays the onset of scurvy in ascorbate-deficient guinea pigs. Proc Natl Acad Sci USA. 1993;90:317.

    Article  PubMed  CAS  Google Scholar 

  174. Martensson J, Meister A. Glutathione deficiency decreases tissue ascorbate levels in newborn rats: ascorbate spares glutathione and protects. Proc Natl Acad Sci USA. 1991;88:4656.

    Article  PubMed  CAS  Google Scholar 

  175. Murphy ME, Piper HM, Watanabe H, Sies H: Nitric oxide production by cultured aortic endothelial cells in response to thiol depletion and replenishment. J Biol Chem. 1991;266:19378.

    PubMed  CAS  Google Scholar 

  176. Hecker M, Seigle I, Macarthur H, Sessa WC, Vane JR. Role of intracellular thiols in release of EDRF from cultured endothelial cells. Am J Physiol. 1992;262:H888.

    PubMed  CAS  Google Scholar 

  177. Ghigo D, Alessio P, Foco A, Bussolino F, Costamagna D, Heller R, Garbarino G, Pescarmona GP, Bosia A. Nitric oxide synthesis is impaired in glutathione depleted human umbilical vein endothelial cells. Am J Physiol. 1993;265:C728.

    PubMed  CAS  Google Scholar 

  178. Celermajer DS, Sorensen KE, Gooch VM, Spiegelhalter DJ, Miller OI, Sullivan ID, Lloyd JK, Deanfield JE. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet. 1992;340:1111.

    Article  PubMed  CAS  Google Scholar 

  179. Williamson JM, Meister A. Stimulation of hepatic glutathione formation by administration of L-2-oxothiazolidine-4-carboxylate: a 5-oxo-L-prolinase substrate. Proc Natl Acad Sci USA. 1981;78:936.

    Article  PubMed  CAS  Google Scholar 

  180. Boesgaard S, Aldershvile J, Poulsen HE, Loft S, Anderson ME, Meister A. Nitrate tolerance in vivo is not associated with depletion of arterial or venous thiol levels, Circ Res. 1994;74:115.

    Article  PubMed  CAS  Google Scholar 

  181. Vita JA, Frei B, Holbrook M, Gokce N, Leaf C, Keaney JF, Jr. L-2-Oxothiazolidine-4-carboxylic acid revereses endothelial dysfunction in patients with coronary artery disease. J Clin Invest. 1998;101:1408.

    Article  PubMed  CAS  Google Scholar 

  182. Kugiyama K, Ohgushi M, Motoyama T, Hirashima O, Soejima H, Misumi K, Yoshimura M, Ogawa H, Sugiyama S, Yasue H. Intracoronary infusion of reduced glutathione improves endothelial vasomotor response to acetylcholine in human coronary circulation. Circulation 1998;97:2299.

    Article  PubMed  CAS  Google Scholar 

  183. Stuehr DJ, Kwon NS, Nathan CF: FAD and GSH participate in macrophage synthesis of nitric oxide. Biochem Biophys Res Commun. 1990; 168:558.

    Article  PubMed  CAS  Google Scholar 

  184. Komori Y, Hyun J, Chiang K, Fukuto JM. The role of thiols in the apparent activation of rat brain nitric oxide synthase (NOS). J Biochem. 1995;117:923.

    PubMed  CAS  Google Scholar 

  185. Hofmann H, Schmidt HHHW. Thiol dependence of nitric oxide synthase. Biochemistry. 1995;34:13443.

    Article  PubMed  CAS  Google Scholar 

  186. Gorren ACF, Schrammel A, Schmidt K, Mayer B. Thiols and neuronal nitric oxide synthase: complex formation, competitive inhibition, and enzyme stabilization. Biochemistry. 1997;36:4360.

    Article  PubMed  CAS  Google Scholar 

  187. Fitzgerald DJ, Roy L, Catella F, FitzGerald GA: Platelet activation in unstable coronary disease. N Engl J Med. 1986;315:983.

    Article  PubMed  CAS  Google Scholar 

  188. Ma XL, Lopez BL, Liu GL, Christopher TA, Gao F, Guo Y, Feuerstein GZ, Ruffolo J, Barone FC, Yue TL. Hypercholesterolemia impairs a detoxification mechanism againt peroxynitrite and renders the vascular tissue more susceptible to oxidative injury, Circ Res. 1997;80:894.

    Article  PubMed  CAS  Google Scholar 

  189. Howells DW, Hyland K. Direct analysis of tetrahydrobiopterin in ceribrospinal fluid by highperfomrmance liquid chromatography with redox electrochemistry: prevention of autoxidation during storage and analysis. Clin Chim Acta. 1987;167:23.

    Article  PubMed  CAS  Google Scholar 

  190. Heales S, Hyland K. Determination of quinonoid dihydrobiopterin by high-performance liquid chromatrography and electrochemical detection. J Chromatogr. 1989;494:77.

    Article  PubMed  CAS  Google Scholar 

  191. Patel JM, Abeles AJ, Block ER. Nitric oxide exposure and sulfhydryl modulation alter L-arginine transport in cultured pulmonary artery endothelial cells. Free Radic Biol Med. 1996;20:629.

    Article  PubMed  CAS  Google Scholar 

  192. Xia Y, Dawson VL, Dawson TM, Snyder SH, Zweier JL. Nitric oxide synthase generates Superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cell injury. Proc Natl Acad Sci USA. 1996;93:6770.

    Article  PubMed  CAS  Google Scholar 

  193. Heinzel B, John M, Klatt P, hme E, Mayer B. Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase. Biochem J. 1992;281:627.

    PubMed  CAS  Google Scholar 

  194. Nishikimi M. Oxidation of ascorbic acid with Superoxide anion generated by the xanthinexanthine oxidase system. Biochem Biophys Res Commun. 1975;63:463.

    Article  PubMed  CAS  Google Scholar 

  195. Bodannes RS, Chan PC. Ascorbic acid as a scavenger of singlet oxygen. FEBS Lett. 1979;105:195.

    Article  PubMed  CAS  Google Scholar 

  196. Halliwell B, Wasil M, Grootveld M. Biologically significant scavenging of the myeloperoxidase-derived oxidant hypochlorous acid by ascorbic acid. Implications for antioxidant protection in the inflamed rheumatoid joint. FEBS Lett. 1987;213:15.

    Article  PubMed  CAS  Google Scholar 

  197. Frei B, England L, Ames BN. Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci USA. 1989;86:6377.

    Article  PubMed  CAS  Google Scholar 

  198. Levine GN, Frei B, Koulouris SN, Gerhard MD, Keaney JF, Jr., Vita JA. Ascorbic acid reverses endothelial dysfunction in patients with coronary artery disease. Circulation. 1996;96:1107.

    Article  Google Scholar 

  199. Ting HH, Timimi FK, Boles KS, Creager SJ, Ganz P, Creager MA. Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest. 1996;97:22.

    Article  PubMed  CAS  Google Scholar 

  200. Ting HH, Timimi FK, Haley EA, Roddy MA, Ganz P, Creager MA. Vitamin C improves endothelium-dependent vasodilation in forearm resistance vessels of humans with hypercholerolemia. Circulation. 1997;95:2617.

    Article  PubMed  CAS  Google Scholar 

  201. Heitzer T, Just H, Munzel T. Antioxidant vitamin C improves endothelial dysfunction in chronic smokers. Circulation. 1996;94:6.

    Article  PubMed  CAS  Google Scholar 

  202. Hornig B, Arakawa N, Kohler C, Drexler H. Vitamin C improves endothelial function of conduit arteries in patients with chronic heart failure. Circulation. 1998;97:363.

    Article  PubMed  CAS  Google Scholar 

  203. Motoyama T, Kawano H, Hirai N. Vitamin E administration improves impairment of endothelium-dependent vasodilation in patients with coronary spastic angina. Circulation 1998;98:111–4464

    Google Scholar 

  204. Jackson TS, Xu A, Vita JA, Keaney JF, Jr. Ascorbic acid prevents the interaction of nitric oxide and Superoxide only at very high physiologic concentrations, Circ Res. 1998;83:916.

    Article  PubMed  CAS  Google Scholar 

  205. O’Keefe JH, Jr., Stone GW, McCallister BD, Jr., Maddex C, Ligon R, Kacich RL, Kahn J, Cavero PG, Hartzler GO, Mccallister BD. Lovistatin plus probucol for prevention of restenosis after percutaneous transluminal coronary angioplasty. Am J Cardiol. 1996;77:649.

    Article  PubMed  Google Scholar 

  206. Jain A, Martensson J, Mehta T, Krauss AN, Auld PA, Meister A. Ascorbic acid prevents oxidative stress in glutathione-deficient mice: effects on lung type 2 cell lamellar bodies, lung survactant, and skeletal muscle. Proc Natl Acad Sci USA. 1992;89:5093.

    Article  PubMed  CAS  Google Scholar 

  207. Boulanger CM, Tanner FC, Bea ML, Hahn AWA, Werner A, Luscher TF. Oxidized low density lipoproteins induce mRNA expression and release of endothelin from human and porcine endothelium. Circ Res. 1992;70:1191.

    Article  PubMed  CAS  Google Scholar 

  208. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988;332:411.

    Article  PubMed  CAS  Google Scholar 

  209. Masaki T, Yanagisawa M, Goto K. Physiology and pharmacology of endothelins. Med Res Rev. 1992;12:391.

    Article  PubMed  CAS  Google Scholar 

  210. Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci USA. 1984;81:3883.

    Article  PubMed  CAS  Google Scholar 

  211. Kugiyama K, Sakamoto T, Misumi I, Sugiyama S, Ohgushi M, Ogawa H, Horiguchi M, Yasue H. Transferable lipids in oxidized low-density lipoprotein stimulate Plasminogen activator inhibitor-1 and inhibit tissue-type Plasminogen activator release from endothelial cells. Circ Res. 1993;73:335.

    Article  PubMed  CAS  Google Scholar 

  212. Marui N, Offermann MK, Swerlick R, Kunsch C, Rosen CA, Ahmad M, Alexander RW, Medford RM. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. J Clin Invest. 1993;92:1866.

    Article  PubMed  CAS  Google Scholar 

  213. Khan BV, Parthasarathy SS, Alexander RW, Medford RM. Modified low density lipoprotein and its constituents augment cytokine activated vascular dell adhesion molecule-1 gene expression in human vascular endothelial cells. J Clin Invest. 1995;95:1262.

    Article  PubMed  CAS  Google Scholar 

  214. D’Alessio P, Moutet M, Coudrier E, Darquenne S, Chaudiere J. ICAM-1 and VCAM-1 expression induced by TNF-alpha are inhibited by a glutathione peroxidase mimic. Free Radie Biol Med. 1998;24:979.

    Article  Google Scholar 

  215. Amberger A, Maczek C, Jurgens G, Michaelis D, Schert G, Trieb K, Eberl T, Jindal S, Xu Q, Wick G. Co-expression of ICAM-1, VCAM-1 ELAM-1 and Hsp60 in human arterial and venous endothelial cells in response to cytokines and oxidized low-density lipoproteins. Cell Stress & Chap. 1997;2:94.

    Article  CAS  Google Scholar 

  216. van der Vliet A, Eiserich JP, Halliwell B, Cross CE. Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite. J Biol Chem. 1997;272:7617

    Article  PubMed  Google Scholar 

  217. Eiserich JP, Cross CE, Jones AD, Halliwell B, van der Vliet, A. Formation of nitrating and chlorinating species by reaction of nitrite with hypocholorous acid. J Biol Chem. 1996;271:19199.

    Article  PubMed  CAS  Google Scholar 

  218. Savenkova MI, Meuller DM, Heinecke JW. Tyrosyl radical generated by myeloperoxidase is a physiological catalyst for the initiation of lipid peroxidation in low density lipoprotein. J Biol Chem. 1994;269:20394.

    PubMed  CAS  Google Scholar 

  219. Hazell LJ, Arnold L, Flowers D, Waeg G, Malle E, Stocker R. Presence of hypochloritemodified proteins in human atherosclerotic lesions. J Clin Invest. 1996;97:1535

    Article  PubMed  CAS  Google Scholar 

  220. Heller R, Münscher-Paulig, F.; Gräbner, R; Till, U. Ascorbic acid potentiates nitric oxide synthesis in endothelial cells. J Biol. Chem 1999;274:8254.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Keaney, J.F. (2000). Atherosclerosis, Oxidative Stress, and Endothelial Function. In: Keaney, J.F. (eds) Oxidative Stress and Vascular Disease. Developments in Cardiovascular Medicine, vol 224. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4649-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4649-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7103-8

  • Online ISBN: 978-1-4615-4649-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics