Skip to main content

Oxidized Phospholipids as Mediators of Vascular Disease

  • Chapter
Oxidative Stress and Vascular Disease

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 224))

  • 403 Accesses

Abstract

Atherosclerosis has been thought to be an inevitable consequence of aging, but progress in understanding the molecular and pathological basis of this vascular disease through the work of Brown and Goldstein (1) has made it clear that this need not be the case. Specific risk factors for this disease exist, and these elucidate general mechanisms underlying this disease. For example, failure to adequately remove plasma cholesterol in the form of low-density lipoprotein (LDL) from the bloodstream, due to mutations in the LDL receptor, leads to high concentration of plasma LDL that is sufficient to cause the disease. Other work (2) demonstrated that LDL underwent oxidative modification to generate particles that were more effective in causing pathological effects. Elevated levels of LDL promoted this pathologic change. Ross proposed a “response-to-injury” model of atherosclerosis (3), where damage to the vessel wall initiated the disease. A refined version of this model recognizes that the early steps in atherogenesis need not necessarily be initiated by the cytotoxicity of oxidized LDL, but rather by activation of an inflammatory response in vascular tissue. Oxidation inappropriately stimulates the normal inflammatory response of endothelial cells and leukocytes. Activation of this normally tightly regulated inflammatory response program, by factors which themselves are not well regulated, (i.e. oxidation of LDL by uncontrolled chemical reactions) leads to chronic, unregulated inflammation of the vascular wall. Such a chronic inflammatory process remodels the vessel wall, drives plaque formation, and destabilizes plaque structures, all key events in atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown MS, Goldstein JL. Lipoprotein metabolism in the macrophage: Implications for cholesterol deposition in atherosclerosis. Ann Rev Biochem. 1983;52:223.

    Article  PubMed  CAS  Google Scholar 

  2. Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem. 1997;272:20963.

    Article  PubMed  CAS  Google Scholar 

  3. Ross R. The pathogenesis of atherosclerosis — an update. N Engl J Med. 1986;314:488.

    Article  PubMed  CAS  Google Scholar 

  4. Zimmerman GA, McIntyre TM, Prescott SM. Perspectives series: Cell adhesion in vascular biology. J Clin Invest. 1996;98:1699.

    Article  PubMed  CAS  Google Scholar 

  5. McEver RP. Leukocyte-endothelial cell interactions. Cur Opin Cell Biol. 1992;4:840.

    Article  CAS  Google Scholar 

  6. McEver RP. Selectins. Curr Opin Immunol. 1994:6:75.

    Article  PubMed  CAS  Google Scholar 

  7. Kubes P, Ibbotson G, Russell J, Wallace JL, Granger DN. Role of platelet-activating factor in ishemia/reperfusion-induced leukocyte adherence. Am J Physiol. 1990;259:G300.

    PubMed  CAS  Google Scholar 

  8. Shimizu Y, Newman W, Tanaka Y, Shaw S. Lymphocyte interactions with endothelial cells. Immunology Today. 1992;13:106.

    Article  PubMed  CAS  Google Scholar 

  9. Zimmerman GA, McIntyre TM, Prescott SM. Thrombin stimulates the adherence of neutrophils to human endothelial cells in vitro. J Clin Invest. 1985;76:2235.

    Article  CAS  Google Scholar 

  10. Zimmerman GA, McIntyre TM, Mehra M, Prescott SM. Endothelial cell-associated platelet-activating factor: A novel mechanism for signaling intercellular adhesion. J Cell Biol. 1990;l10:529.

    Article  Google Scholar 

  11. Geng J-G, Bevilacqua MP, Moore KL, McIntyre TM, Prescott SM, Kim JM, Bliss GA, Zimmerman GA, McEver RP. Rapid neutrophil adhesion to activated endothelium mediated by GMP-140. Nature. 1990;343:757.

    Article  PubMed  CAS  Google Scholar 

  12. Sugama Y, Tiruppathi C, Offakidevi K, Andersen TT, Fenton JW, Malik AB. Thrombininduced expression of endothelial P-selectin and intercellular adhesion molecule-1: a mechanism for stabilizing neutrophil adhesion. J Cell Biol. 1992;119:935.

    Article  PubMed  CAS  Google Scholar 

  13. McEver RP, Beckstead JH, Moore KL, Marshall-Carlson L, Bainton DF. GMP-140, a platelet α-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies. J Clin Invest. 1989;84:92.

    Article  PubMed  CAS  Google Scholar 

  14. Zhou Q, Moore KL, Smith DF, Varki A, McEver RP, Cummings RD. The selectin GMP-140 binds to sialylated, fucosylated lactosaminoglycans on both myeloid and nonmyeloid cells. J Cell Biol. 1991;115:557.

    Article  PubMed  CAS  Google Scholar 

  15. Moore KL, Stults NL, Diaz S, Smith DF, Cummings RD, Varki A, McEver RP. Identification of a specific glycoprotein ligand for P-selectin (CD62) on myeloid cells. J Cell Biol. 1992;118:445.

    Article  PubMed  CAS  Google Scholar 

  16. Norgard KE, Moore KL, Diaz S, Stults NL, Ushiyama S, McEver RP, Cummings RD, Varki A. Characterization of a specific ligand for P-selectin on myeloid cells. J Biol Chem. 1993;268:12764.

    PubMed  CAS  Google Scholar 

  17. Geng J-G, Moore KL, Johnson AE, McEver RP. Neutrophil recognition requires a Ca2+-induced conformational change in the lectin domain of GMP-140. J Biol Chem. 1991266:22313.

    PubMed  CAS  Google Scholar 

  18. Lorant DE, Tophan MK, Whatley RE, McEver RP, McIntyre TM, Prescott SM, Zimmerman GA. Inflammatory roles of P-selectin. J Clin Invest. 1993;92:559.

    Article  PubMed  CAS  Google Scholar 

  19. Lorant DE, Patel KD, McIntyre TM, McEver RP, Prescott SM, Zimmerman GA. Coexpression of GMP-140 and PAF by endothelium stimulated by histamine or thrombin: a juxtacrine system for adhesion and activation of neutrophils. J Cell Biol. 1991; 115:2

    Article  PubMed  CAS  Google Scholar 

  20. Allison F Jr., Smith MR, Wood WB Jr: The inflammatory reaction to thermal injury as observed in the rabbit ear chamber. J Expl Med. 1955; 102:655.

    Article  CAS  Google Scholar 

  21. Moore KL, Patel KD, Bruehl RE, Fugang L, Johnson DA, Lichenstein HS, Cummings RD, Bainton DF, McEver RP. P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin. J Cell Biol. 1995;128:661.

    Article  PubMed  CAS  Google Scholar 

  22. Lenter M, Levinovitz A, Isenmann S, Vestweber D. Monospecific and common glycoprotein ligands for E-and P-selectin on myeloid cells. J Cell Biol. 1994;125:471.

    Article  PubMed  CAS  Google Scholar 

  23. Bevilacqua MP, Johnston GI, Gimbrone MA Jr., McEver RP. Endothelial-leukocyte adhesion molecule-1 (ELAM-1) and granule membrane protein 140 (GMP-140) define a new family of inducible lectin-like receptors. FASEB J. 1989;3:A610.

    Google Scholar 

  24. Rollins BJ, Pober JS. Interleukin-4 induces the synthesis and secretion of MCP-1/JE by human endothelial cells. Am J Pathol. 1991;138:1315.

    PubMed  CAS  Google Scholar 

  25. Johnson-Tidey RR, McGregor JL, Taylor PR, Poston RN: Increase in the adhesion molecule P-selectin in endothelial overlying atherosclerotic plaques. Am J Pathol. 1994; 144:952.

    PubMed  CAS  Google Scholar 

  26. Winn RK, Vedder NB, Paulson JC, Harlan JM. Monoclonal antibodies to P-selectin are effective in preventing reperfusion injury to rabbit ears. Circulation. 1992;86:1-80.

    Article  Google Scholar 

  27. Weyrich AS, Ma X-L, Lefer DJ, Albertine KH, Lefer AM. In vivo neutralization of P-selectin protects feline heart and endothelium in myocardial ischemia and reperfusion injury. J Clin Invest. 1993;91:2620.

    Article  PubMed  CAS  Google Scholar 

  28. Dong ZM, Chapman SM, Brown AA, Frenette PS, Hynes RO, Wagner DD. The combined role of P-and E-selectins in atherosclerosis. J Clin Invest. 1998;102:145.

    Article  PubMed  CAS  Google Scholar 

  29. Nageh MF, Sandberg ET, Marotti KR, Lin AH, Melchoir EP, Bullard DC, Beaudet AL. Deficiency of inflammatory cell adhesion molecules protects against atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 1997;17:1517.

    Article  PubMed  CAS  Google Scholar 

  30. Russell PS, Chase CM, Colvin RB. Coronary atherosclerosis in transplanted mouse hearts. IV effects of treatment with omonclonal antibodies to intercellular adhesion molecule-1 and leukocyte function-associated antigen-1. Transplantation. 199;60:724.

    Article  Google Scholar 

  31. Yasaka T, Boxer LA, Baehner RL: Monocyte aggregation and Superoxide anion release in response to formyl-methionyl-leucy-phylalanine (FMLP) and platelet-activating factor (PAF). J Immunol. 1982; 128:1939.

    PubMed  CAS  Google Scholar 

  32. Bussolino F, Fischer E, Turrini F, Kazatchkine MD, Arese P. Platelet-activating factor enhances complement-dependent phagocytosis of diamide-treated erythrocytes by human monocytes through activation of protien kinase C and phosphorylation of complement receptor type one (CR1). J Biol Chem. 1989;264:21711.

    PubMed  CAS  Google Scholar 

  33. Valone FH, Philip R, Debs RJ. Enhanced human monocyte cytoxicity by platelet-activating factor. Immunology. 1988;64:715.

    PubMed  CAS  Google Scholar 

  34. Bonavida B, Mencia-Huerta J-M, Braquet P. Effect of platelet-activating factor on monocyte activation and production of tumor necrosis factor. Internl Arch Allergy and Applied Immunol 1989:88:157.

    Article  CAS  Google Scholar 

  35. Weyrich AS, McIntyre TM, McEver RP, Prescott SM, Zimmerman GA. Monocyte tethering by P-selecting regulates monocyte chemotactic protein-1 and tumor necrosis factor-α secretion: Signal integration and NF-kB translocation. J Clin Invest. 1995;95:2297.

    Article  PubMed  CAS  Google Scholar 

  36. Salem P, Deryckx S, Dulioust A, Vivier E, Denizot Y, Damais C, Dinarello CA, Thomas Y. immunoregulatory functions of paf-acether IV. Enhancement of IL-1 production by muramyl dipeptide-stimulated monocytes. J Immunol. 1990;144:1338.

    PubMed  CAS  Google Scholar 

  37. Fauler J, Sielhorst G, Frolich JC. Platelet-activating factor induces the production of leukotrienes by human monocytes. Biochim Biophys Acta. 1989:1013:80.

    Article  PubMed  CAS  Google Scholar 

  38. Paul-Eugene N, Dugas B, Picquot S, Lagente V, Mencia-Huerta JM, Braquet P. Influence of interleukin-4 and platelet-activating factor on the Fc epsilon RII/CD23 expression on human monocytes. J Lipid Mediat. 1990;2:95.

    PubMed  CAS  Google Scholar 

  39. Kuijpers TW, Hakkert BC, van Mourik JA, Roos D. Distinct adhesive properties of granulocytes and monocytes to endothelial cells under statis and stirred conditions. J Immunol.+ 1990:145:2588.

    PubMed  CAS  Google Scholar 

  40. Rouis M, Nigon F, Chapman MJ. Platelet activating factor is a potent stimulant of the production of active oxygen species by human monocyte-derived macrophages. Biochem Biophys Res Comm. 1988;156:1293.

    Article  PubMed  CAS  Google Scholar 

  41. Shaw JO, Pinckard RN, Ferrigni KS, McManus LM, Hanaha DJ. Activation of human neutrophils with 1-O-hexadecyl/octadecyl-2-acetyl-sn-glyceeryl-3-phosphorylcholine (platelet-activating factor). J Immunol. 1981;127:1250.

    PubMed  CAS  Google Scholar 

  42. Dewald B, Baggioline M. Platelet-activating factor as a stimulus of exocytosis in human neutrophils. Biochimica et Biophysica Acta. 1986;888:42.

    Article  PubMed  CAS  Google Scholar 

  43. Wykle RL, Miller CH, Lewis JC, Schmitt JD, Smith JA, Surles JR, Piantadosi C, O’Flaherty JT. Sterospecific activity of 1-O-alkyl-2-O-acetyl-sn-glycero-3-phosphocholine and comparison of analogs in the degranulation of platelets and neutrophils. Biochem Biophyisc Res Comm. 1981;100:1651.

    Article  CAS  Google Scholar 

  44. O’Flaherty JT, Miller CH, Lewis JC, Wykle RL, Bass DA, McCall CE, Waite M, DeChatelet LR. Neutrophil responses to platelt-activating factor. Inflammation. 1981;5:193.

    Article  PubMed  Google Scholar 

  45. Gay JC, Beckman JK, Zaboy KA, Lukens JN. Modulation of neutrophil oxidative responses to soluble stimuli by platelet-activating factor. Blood. 1986;67:931.

    PubMed  CAS  Google Scholar 

  46. Benveniste J, Henson PM, Cochrane C. Leukocyte-dependent histamine release from rabbit platelets: The role for IgE, basophils and a platelet-activating factor. J Exper Med. 1972:136:1356.

    Article  CAS  Google Scholar 

  47. Chignard M, Le Couedic JP, Tence M, Vargaftig BB, Benveniste J. The role of plateletactivating factor in platelet aggregation. Nature. 1979;279:799.

    Article  PubMed  CAS  Google Scholar 

  48. Stoll LL, Spector AA. Interaction of platelet-activating factor with endothelial and vascular smooth muscle cells in coculture. J Cell Physiol. 1989;139:253.

    Article  PubMed  CAS  Google Scholar 

  49. Heery JM, Kozak M, Stafforini DM, Jones DA, Zimmerman GA, McIntyre TM, Prescott SM. Oxidatively modified LDL contains phospholipids with PAF-like activity and stimulates the growth of smooth muscle cells. J Clin Invest. 1995;96:2322.

    Article  PubMed  CAS  Google Scholar 

  50. Blank ML, Snyder F, Byers LW, Brooks B, Muirhead EE. Antihypertensive activity of an alkyl ether analog of phosphatidylcholine. Biochem Biophysic Res Comm. 1979;90:1194.

    Article  CAS  Google Scholar 

  51. Demopoulos CA, Pinckard RN, Hanahan DJ. Platelet-activating factor: Evidence for l-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators). J Biol Chem. 1979;254:9355.

    PubMed  CAS  Google Scholar 

  52. Zimmerman GA, Prescott SM, McIntyre TM. Platelet-activating factor: A fluid-phase and cell-mediator of inflammation. In: Gallin JI, Goldstein IM, Snyderman R, eds. Inflammation: Basic principles and clinical correlates. 2 ed. New York: Raven Press;1992:149.

    Google Scholar 

  53. Snyder F. Enzymatic pathways for platelet-activating factor, related alkyl glycerolipids, and their precursors. In: Snyder F, ed. Platelet-activating Factor and Related Lipids Mediators. New York: Plenum Press;1987:89.

    Chapter  Google Scholar 

  54. Bonventre JV, Huange Z, Taheri MR, O’Leary E, Li E, Moskowitz MA, Sapirstein A. Reduced fertility and postischaemic brain injury in mice deficient in cystolic phospholipase A23. Nature. 1997;390:622.

    Article  PubMed  CAS  Google Scholar 

  55. Nieto ML, Velasco S, Crespo MS. Modulation of acety1-CoA:1-alkyl-2-lyso-sn-glycero-3-phosphocholine (lyso-PAF) acetyltransferase in human polymorphonuclears: The role of cyclic AMP-dependent and phospholipid sensitive, calcium-dependent protein kinases. J Biol Chem. 1988;263:4607.

    PubMed  CAS  Google Scholar 

  56. Lenihan DJ, Lee T-C. Regulation of platelet-activating factor synthesis: Modulation of 1-alkyl-2-lyso-sn-glycero-3-pohophocholine: Acetyle-CoA acetyltransferease by phosphorylation and dephosphorylation in rat spleen microsomes. Biochem Biophysic Res Comm. 1984;120:834.

    Article  CAS  Google Scholar 

  57. Holland MR, Whatley RE, Stroud ED, Zimmerman GA, McIntyre Tm, Prescott SM. Activation of the acetyl-CaA: LysoPAF acetyltransferase regulates platelet activating factor synthesis in endothelial cells. Circulation. 1990;82:111–372.

    Google Scholar 

  58. Shimizu T, Mutoh H, Kato S. Platelet-activating factor receptor. Gene structure and tissue-specific regulation. Adv Exp Med Biol. 1996;416:79.

    PubMed  CAS  Google Scholar 

  59. Honda Z, Nakamura M, Miki I, Minami M, Watanabe T, Seyama Y, Okado H, Toh H, Ito K, Miyamoto T, Shimizu T. Cloning by functional expression of platelet-activating factor receptor from guinea-pig lung. Nature. 1991;349:342.

    Article  PubMed  CAS  Google Scholar 

  60. Nakamura M, Honda Z, Izumi T, Sakanaka C, Mutoh H, Minami M, Bito H, Seyama Y, Matsumoto T, Noma M, Shimizu T. Molecuar cloning and expression of platelet-activating factor receptor from human leukocytes. J Biol Chem. 1991;266:20400.

    PubMed  CAS  Google Scholar 

  61. Kunz D, Gerard NP, Gerard C. The human leukocyte platelet-activating factor receptor. J Biol Chem. 1992;267:9101.

    PubMed  CAS  Google Scholar 

  62. Seyfried CE, Schweickart VL, Godiska R, Gray PW. The human platelet activating factor receptor gene (PTAFR) contains no introns and maps to chromosome 1. Genomics. 1992;13:832.

    Article  PubMed  CAS  Google Scholar 

  63. Shen TY, Hwang S-B, Doebber TW, Robbins JC. The chemical and biological properties of PAF agaonists, antagonists, and biosynthetic inhbitors. In: Snyder F, ed. Platelet-activating factor and related lipid mediators. New York: Plenum Press; 1987:153.

    Chapter  Google Scholar 

  64. O’Flaherty JT, Tessner T, Greene D, Redman JR, Wykle RL. Comparison of 1-O-alkyl-, 1-O-alk-1’-enyl-, and 1-O-acyl-2-acetyl-sn-glycero-3-pohospoethanolamines and-3-phosphocholines as agonist of the platelet-activating factor family. Biochim Biophys Acta. 1994;1210:209.

    Article  PubMed  Google Scholar 

  65. Koltai M, Braquet PG. Involvment of PAF in atherogenesis. Brief Review. Agents Actions Suppl. 1992:37:333.

    PubMed  CAS  Google Scholar 

  66. Casals-Stenzerl J, Muacevic G, Weber K-H. Pharmacologic actions of WEB 2086, a new specific antagonist of platelet activating factor. J Pharmacol Exper Thera. 1987;241:974.

    Google Scholar 

  67. Imaizumi T, Stafforni DM, Yamada Y, McIntyre TM, Prescott SM, Zimmerman GA. Platelet-activating factor: A mediator for clinicians. J Intern Med. 1995;238:5.

    Article  PubMed  CAS  Google Scholar 

  68. Kuitert LM, Angus RM, Barnes NC, Barnes PJ, Bone MF, Chung KF, Fairfax AJ, Higenbotham TW, O’Connor BJ, Piotrowska B, et al. Effect of a novel potent plateletactivating facotr antagonist, modipafant, in clinical asthma. Am J Respir Crit Care Med. 1995;151:1331.

    PubMed  CAS  Google Scholar 

  69. Evans DJ, Barnes PJ, Cluzel M, O’Connor BJ. Effects of a potent platelet-activating factor antagonist, SR274174A, on allergen-induced asthmatic responses. Am J Crit Care Med. 1997;156:11.

    CAS  Google Scholar 

  70. Kagoshima M, Tomomatsu N, Iwahisa Y, Yamaguchi S, Matsuura M, Kawakami Y, Terasawa M. Suppressive effects of Y-24180, a receptor antagonist to platelet activating factor (PAF), on antigen-induced asthmatic responses in guinea pigs. Inflamm Res. 1997;46:147.

    Article  PubMed  CAS  Google Scholar 

  71. Hozawa S, Haruta Y, Ishioka S, Yamakido M. Effects of a PAF antagonist, Y-24180, on bronchial hyperresponsiveness in patients with asthma. Am J Respir Crit Care Med. 1995;152:1198.

    PubMed  CAS  Google Scholar 

  72. Diamond MS, Springer TA. The dynamic regulation of integrin adhesiveness. Curr Biol 1994;4:506

    Article  PubMed  CAS  Google Scholar 

  73. Shalit M, Von Allmen C, Atkins PC, Zweiman B. Platelet activating factor increases expression of complement receptors on human neutrophils. J Leukocyte Biol. 1988:44:212.

    PubMed  CAS  Google Scholar 

  74. Dewald B, Thelen M, Baggiolini M. Two transduction sequences are necessary for neutrophil activation by receptor agonists. J Biol Chem. 1988:263:16179.

    PubMed  CAS  Google Scholar 

  75. Anderson DC, Springer TA. Leukocyte adhesion deficiency: An inherited defect in the Mac-1, LFA-1, and p150,95 glycoproteins. Ann Rev Med. 1987;38:175.

    Article  PubMed  CAS  Google Scholar 

  76. Lo SK, van Seventer GA, Levin SM, Wright SD. Two leukocyte receptors (CD11a/CD18 and CD11b/CD18) mediate transient adhesion to endothelium by binding to different ligands. J Immunol. 1989:143:3325.

    PubMed  CAS  Google Scholar 

  77. Schleiffenbaum B, Moser R, Patarroyo M, Fehr J. The cell surface glycoprotein Ma-1 (CD11b/CD18) mediated neutrophil adhesion and modulates degranulation independently of its quantitative cell surface expression. J Immunol. 1989:142:3537.

    PubMed  CAS  Google Scholar 

  78. Kishimoto TK, Anderson DC. The role of integrins in inflammation. In: Gallin JI, Goldstein IM, Snyderman R, eds. Inflammation: Basic Principles and Clinical Correlates, 2nd edition. New York: Raven Press, Ltd. 1992 pp 353.

    Google Scholar 

  79. Weyrich AS, Elstad MR, McEver RP, McIntyre TM, Moore KL, Morrissey JH, Prescott SM, Zimmerman GA. Activated platlets signal chemokine synthesis by human monocytes. J Clin Invest. 1996;97:1525.

    Article  PubMed  CAS  Google Scholar 

  80. Zimmerman GA, Elstad MR, Lorant DE, McIntyre TM, Prescott SM, Topham MK, Weyrich AS, Whatley RE. Platelet-activating factor (PAF): signallyng and adhesion in cell-cell interactions. Adv Exp Med Biol. 1996;416:297.

    PubMed  CAS  Google Scholar 

  81. McIntyre TM, Zimmerman GA, Prescott SM. Biologically active oxidized phospholipids. J Biol Chem. 1998;in press.

    Google Scholar 

  82. Lehr HA, Krombach F, Munzing S, Bodlaj R, Glaubitt SI, Seiffge D, Hubner C, von Andrian UH, Messmer K. In vitro effects of oxidized low density lipoproteins on CD11b/CD18 and L-selectin presentation on neutrophils and monocytes with relevance for the in vivo situation. Am J Pathol. 1995;146:218.

    PubMed  CAS  Google Scholar 

  83. Frotegard J, Huang YH, Ronnelid J, Schafer-Elinder L: Platelet-activating factor and oxidized LDL induce immune activation by a common mechanism. Arterioscler Thromb Vasc Biol. 1997; 17:963.

    Article  Google Scholar 

  84. Frostegard J, Wu R, Giscombe R, Holm G, Lefvert AK, Nilsson J. Induction of T-cell activation by oxidized low density lipoprotein. Arterioscler Thromb. 1992;12:461.

    Article  PubMed  CAS  Google Scholar 

  85. Lewis JC, Bennett-Cain AL, DeMars CS, Doellgast GJ, Grant KW, Jones NL, Gupta M. Procoagulant activity after exposure of monocyte-derived macrophages to minimally oxidized low density lipoprotein. Co-localization of tissue factor antigen and nascent fibrin fibers at the cell surface. Am J Pathol. 1995;147:1029.

    PubMed  CAS  Google Scholar 

  86. Oida K, Tohda G, Ishii H, Horie S, Kohno M, Okada E, Suzuki J, Nakai T, Miyamori I. Effect of oxidized low density lipoprotein on thrombomodulin expression by THP-1 cells. Thromb Haemost. 1997;78:1228.

    PubMed  CAS  Google Scholar 

  87. Muller K, Hardwick SJ, Marchant CE, Law NS, Waeg G, Esterbauer H, Carpenter KL, Mitchinson MJ. Cytotoxic and chemotactic potencies of several aldehydic components of oxidized low density lipoproteins for human monocyte-macrophages. FEBS Lett. 1996;388:165.

    Article  PubMed  CAS  Google Scholar 

  88. Frostegard J, Nilsson J, Haegerstrand A, Hamsten A, Wigzell H, Gidlund M. Oxidized low density lipoprotein induces differentiation and adhesion of human monocytes and the monocytic cell line U937. Proc Natl Acad Sci USA. 1990;87:904.

    Article  PubMed  CAS  Google Scholar 

  89. Wang GP, Deng ZD, Ni J, Qu ZL. Oxidized low density lipoproteins and very low density lipoprotein enhance expression of monocyte chemoattractant protein-1 in rabbit periotenal exudate macrophages. Atherosclerosis. 1997; 133:31.

    Article  PubMed  CAS  Google Scholar 

  90. Ku G, Thomas CE, Akeson AL, Jackson RL. Induction of interleukin 1 beta expression from human peripheral blood monocyte-derived macrophages by 9-hydroxyoctadecadienoic acid. J Biol Chem. 1992;267:14183.

    PubMed  CAS  Google Scholar 

  91. Ardlie NG, Selley ML, Simons LA. Platelet activation by oxidatively modified low density lipoproteins. Atherosclerosis. 1989;76:117.

    Article  PubMed  CAS  Google Scholar 

  92. Lehr HA, Frei B, Olofsson AM, Carew TE, Arfors KE. Protection from oxidized LDL-induced leukocyte adhesion to microvascular and macrovascular endothelium in vivo by vitamin C but not by vitamin E. Circulation. 1995;91:1525.

    Article  PubMed  CAS  Google Scholar 

  93. McMurray HF, Parthasarathy S, Steinberg D. Oxidatively modified low density liporotein is a chemoattractant for human T lymphocytes. J Clin Invest. 1993;92:1004.

    Article  PubMed  CAS  Google Scholar 

  94. Huang YH, Ronnelid J, Frostegard J. Oxidized LDL induces enhanced antibody formation and MHC class II-dependent IFN-gamma production in lymphocytes from healthy individuals. Arterioscler Thromb Vasc Biol. 1995;15:1577.

    Article  PubMed  CAS  Google Scholar 

  95. Jeng JR, Chang CH, Shieh SM, Chiu HC. Oxidized low-density lipoproteins enhances monocyte-endothelial cell binding against shear-stress induced detachment. Biochim Biophys Acta. 1993;1178:221.

    Article  PubMed  CAS  Google Scholar 

  96. Amberger A, Maczek C, Jurgens G, Michaelis D, Schert G, Trieb K, Ebert T, Jindal S, Xu Q, Wick G. Co-expression of ICAM-1, VCAM-1, ELAM-1 and Hsp60 in human arterial and venous endothelial cells in response to cytokines and oxidized low-density lipoproteins. Cell Stress Chaperones. 1997;2:94.

    Article  PubMed  CAS  Google Scholar 

  97. Cominiacini L, Garbin U, Pasini AF, Davoli A, Campagnola M, Contessi GB, Pastorino AM, Lo Cascio V. Antioxidants inhibit the expression of intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1 induced by oxidized LDL on human umbilical vein endothelial cells. Free Rad Biol Med. 1997;22:117.

    Article  Google Scholar 

  98. Gebuhrer V, Murphy JF, Bordet JC, Reck MP, McGregor JL. Oxidized low-density lipoproteins induces the expression of P-selectin (GMP140/PADGEM/CD62) on human endothelial cells. Biochem J. 1995;306;293.

    PubMed  CAS  Google Scholar 

  99. Cushing SD, Berliner JA, Valente AJ, Territo MC, Navab M, Parhami F, Gerrity R, Schwartz CJ, Fogelman AM. Minimally modified low density lipoprotein induces monocyte chemotactic proteinl in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA. 1990;87:5134.

    Article  PubMed  CAS  Google Scholar 

  100. Takahara N, Kashiwagi A, Nishio Y, Harada N, Kojima H, Maegawa H, Hidaka H, Kikkawa R. Oxidized lipoprotins found in patients with NIDDM stimulate radical-induced monocyte chemoattractant protein-1 mRNA expression in cultured human endothelial cells. Diabetologia. 1997;40:662.

    Article  PubMed  CAS  Google Scholar 

  101. Chatterjee S. Role of oxidized human plasma low density lipoproteins in atherosclerosis: effects on smooth muscle cell proliferation. Mol Cell Biochem. 1992; 111:143.

    Article  PubMed  CAS  Google Scholar 

  102. Heery JM, Kozak M, Stafforini DM, Jones DA, Zimmerman GA, McIntyre TM, Prescott SM. Oxidatively modified LDL contains phospholipids with platelet-activating factor-like activity and stimulates the growth of smooth muscle cells. J Clin Invest. 1995;96:2322.

    Article  PubMed  CAS  Google Scholar 

  103. Zwijsen RM, Japenga SC, Heijen AM, van den Bos RC, Koeman JH: Induction of plateletderived growth factor chain a gene expression in human smooth muscle cells by oxidized low density lipoproteins. Biochem Biophys Res Comm. 1992; 186:1410.

    Article  PubMed  CAS  Google Scholar 

  104. Stiko-Rahm A, Hultgardh-Nilsson A, Regnstrom J, Hamsten A, Nilsson J: Native and oxidized LDL enhances production of PDGF AA and the surface expression of PDGF receptors in cultured human smooth muscle cells. Arterioscler Thromb. 1992; 12:1099.

    Article  PubMed  CAS  Google Scholar 

  105. Stremler KE, Stafforini DM, Prescott SM, Zimmerman GA, McIntyre TM. An oxidized derivative of phosphatidylcholine is a substrate for the platelet-activating factor acetylhydrolase from human plasma. J Biol Chem. 1989;264:5331.

    PubMed  CAS  Google Scholar 

  106. Smiley PL, Stremler KE, Prescott SM, Zimmerman GA, McIntyre TM. Oxidatively fragmented phosphatidylcholines activate human neutrophils through the receptor for plateltactivatingfactor. J Biol Chem. 1991;266:11104.

    PubMed  CAS  Google Scholar 

  107. Stremler KE, Stafforini DM, Prescott SM, McIntyre TM. Human plasma platelet-activating factor acetylhydrolase: oxidatively-fragmented phospholipids as substratess. J Biol Chem. 1991;266:11095.

    PubMed  CAS  Google Scholar 

  108. Patel KD, Zimmerman GA, Prescott SM, McEver RP, McIntyre TM. Oxygen radicals induce human endothelial cells to express GMP-140 and bind neutrophils. J Cell Biol. 1991;112:749.

    Article  PubMed  CAS  Google Scholar 

  109. Patel KD, Zimmerman GA, Prescott SM, McIntyre TM. Novel leukocyte agonists are released by endothelial cells exposed to peroxide. J Biol Chem. 1992;267:15168.

    PubMed  CAS  Google Scholar 

  110. Diagne A, Fauvel J, Record M, Chap H, Douste-Blazy L. Comparative composition of various tissues from human, rat and guinea pig. Biochim Biophys Acta. 1984;793:221.

    Article  PubMed  CAS  Google Scholar 

  111. Sugiura T, Waku K. Composition of alkyl ether-linked phospholipids in mammalian tissues. In: Snyder F, ed. Platelet-activating factor and related lipid mediators. New York: Plenum Press. 1987 pp 55.

    Chapter  Google Scholar 

  112. Watson AD, Leitinger N, Navah M, Faull KF, Horkko S, Witztum JL, Palinski W, Schwenke D, Salomon RG, Sha W, Subbanagounder G, Fogelman AM, Berliner JA. Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J Biol Chem. 1997;272:13597.

    Article  PubMed  CAS  Google Scholar 

  113. Leitinger N, Watson AD, Faull KF, Fogelman AM, Berliner JA. Monocyte binding to endothelial cells induced by oxidized phospholipids present in minimally oxidized low density lipoprotein is inhbited by a platelet activating factor receptor antagonist. Adv Exp MedBiol. 1997;433:379.

    CAS  Google Scholar 

  114. Yoshida J, Tokumura A, Fukuzawa K, Terao M, Takauchi K, Tsukatani H. A plateletaggregating and hypotensive phospholipid isolated from bovine brain. J Pharm Pharmacol. 1986;38:878.

    Article  PubMed  CAS  Google Scholar 

  115. Tanaka T, Tokumura A, Tsukatani H. Platelet-activating factor (PAF)-like phospholipids formed during peroxidation of phosphatidylcholines from different foodstuffs. Biosci Biotechnol Biochem. 1995;59:1389.

    Article  PubMed  CAS  Google Scholar 

  116. Tokumura A, Kamiyasu K, Takauchi K, Tsukatani H. Evidence for existence of various homologues and analogues of platelet activating factor in a lipid extract of bovine brain. Biochem Biophys Res Comm. 1987;145:415.

    Article  PubMed  CAS  Google Scholar 

  117. Tanaka T, Iimori M, Tsukatani H, Tokumura A. Platelet-aggregating effects of plateletactivating factor-like phospholipids formed by oxidation of phosphatidylcholines containing an sn-2-polyunsatuated fatty acyl group. Biochim Biophys Act.. 1994; 1210:202.

    Article  CAS  Google Scholar 

  118. Pryor WA, Stone K. Oxidants in cigarette smoke. Ann NY Acad Sci. 1993;686:12.

    Article  PubMed  CAS  Google Scholar 

  119. Stafford RS, Becker CG. Cigarette smoking and atherosclerosis. In: Fuster V, Ross R, Topol E, eds. Atherosclerosis and coronary artery diseases. Philadelphia, PA. Lippincott-Raven Publishers; 1996 pp. 303.

    Google Scholar 

  120. Lehr HA, Hubner C, Nolte D, Finckh B. Beisiegel U, Kohlschutter A, Mebmer K. Oxidatively modified human low-density lipoprotein stimulates leukocyte adherence to the microvascular endothelium in vivo. Res Exper Med. 1991; 191:85.

    Article  CAS  Google Scholar 

  121. Rimm E, Stampfer M. The role of antioxidants in preventive cardiology. Curr Opin Cardiol. 1997;12:188.

    Article  PubMed  CAS  Google Scholar 

  122. Chisolm G, Penn MS. Oxidized lipoproteins and atherosclerosis. In: Fuster V, Ross R, Topol E, eds. Atherosclerosis and coronary artery diseases. Philadelphia, PA: Lippincott-Raven Publishers; 1996 ppl29.

    Google Scholar 

  123. Stahl GL, Terashita Z, Lefer AM. Role of platelet activating factor in propagation of cardiac damage during myocardial ischemia. J Pharmacol Exp Ther. 1988;244:898.

    PubMed  CAS  Google Scholar 

  124. Montrucchio G, Alloatti G, Mariano F, de Paulis R, Comino A, Emanuelli G, Camussi G. Role of platelet-activating factor in the reperfusion injury of rabbit ischemic heart. Am J Pathol. 1990;137:71.

    PubMed  CAS  Google Scholar 

  125. Kubes P, Ibbotson G, Russell J, Wallace JL, Granger DN. Role of platelet-activating factor in ischemia/reperfusion-induced leukocyte adherence. Am J Physiol. 1990;259:G300.

    PubMed  CAS  Google Scholar 

  126. Alloatti G, Montrucchio G, Camussi G. Role of platelet-activating factor (PAF) in oxygen radical-induced cardiac dysfunction. J Pharmacol Exp Ther. 1994;269:766.

    PubMed  CAS  Google Scholar 

  127. Matsuo Y, Kihara T, Ikeda M, Ninomiya M, Onodera H, Kogure K. Role of plateletactivating factor and thromboxane A2 in radical production during ischemia and reperfusion of the rat brain. Brain Res.. 1996;709:296.

    Article  PubMed  CAS  Google Scholar 

  128. Izuoka T, Takayama Y, Sugiura T, Taniguchi H, Tamura T, Kitashiro S, Jikuhara T, Iwasaka T. Role of platelet-activating factor on extravascular lung water after cornary reperfusion in dogs. Jpn J Physiol. 1998;48:157.

    Article  PubMed  CAS  Google Scholar 

  129. Kugiyama K, Kerns SA, Morrisett JD, Roberts R, Henry PD. Impairment of endotheliumdependent arterial relaxation by lysolecithin in modified low-denstiy lipoproteins. Nature. 1990;344:160.

    Article  PubMed  CAS  Google Scholar 

  130. Chen L, Liang B, Froese DE, Liu S, Wong JT, Tran K, Hatch GM, Mymin D, Kroeger EA, Man RY, Choy PC. Oxidative Modification of low density lipoprotein in normal and hyperlipidemic patients: effect of lysophosphatidylcholine composition on vascular relaxation. J Lipid Res. 1997;38:546.

    PubMed  CAS  Google Scholar 

  131. Stafforini DM, McIntyre TM, Carter ME, Prescott SM. Human plasma platelet-activating factor acetylhydrolase: association with lipoprotein particles and role in the degradation of platelet-activating factor.J Biol Chem. 1987;262:4215.

    PubMed  CAS  Google Scholar 

  132. Quinn MT, Parthasarathy S, Steinberg D. Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci USA. 1988;85:2805.

    Article  PubMed  CAS  Google Scholar 

  133. Kume N, Gimbrone MA Jr. Lysophosphatidylcholine transcriptionally induces growth factor gene expression in cultured human endothelial cells. J Clin Invest. 1994;93:907.

    Article  PubMed  CAS  Google Scholar 

  134. Tokumura A, Iimori M, Nishioka Y, Kitahara M, Sakashita M, Tanaka S. Lysophosphatidic acids induce proliferation of cultured vascular smooth muscle cells from rat aorta. Am J Physiol. 1994;267:C204.

    PubMed  CAS  Google Scholar 

  135. Ogita T, Tanaka Y, Nakaoka T, Matsuoka R, Kira Y, Nakamura M, Shimizu T, Fujita T. Lysophosphatidylcholine transduces Ca2+ signaling via the platelet-activating factor receptor in macrophages. Am J Physiol. 1997;272:H17.

    PubMed  CAS  Google Scholar 

  136. Subbaiah PV, Chen CH, Bagdade JD, Albers JJ. Substrate specificity of plasma lysolecithin acyltransferase and the molecular species of lecithin formed by the reaction. J Biol Chem. 1985;260:5308.

    PubMed  CAS  Google Scholar 

  137. Rabini RA, Galassi R, Fumelli P, Dousset N, Solera ML, Valdiguie P, Curatola G, Ferretti G, Taus M, Mazzanti L. Reduced NA+ — K+ ATPase activity in diabetic patients. Diabetes. 1994;43:915.

    Article  PubMed  CAS  Google Scholar 

  138. Stafforini DM, Prescott SM, McIntyre TM. Human plasma platelet-activating factor acetylhydrolase: Purification and properties. J Biol Chem. 1987;262:4223.

    PubMed  CAS  Google Scholar 

  139. Miwa M, Miyake T, Yamanaka T, Sugatani J, Suzuki Y, Sakata S, Araki Y, Matsumoto M. Characterization of serum platelet-activating (PAF) acetylhydrolase: correlation between deficiency of serum PAF acetylhydrolase and respiratory symptoms in asthmatic children. J Clin Invest 1988;82:1983.

    Article  PubMed  CAS  Google Scholar 

  140. Stafforini DM, Satoh K, Atkinson DL, Tjoelker LW, Eberhardt C, Yoshida H, Imaizumi T-A, Takamatsu S, Zimmerman GA, McIntyre TM, Gray PW, Prescott SM. Platelet-activating factor acetylhydrolase deficiency: a missense mutation near the active siet of an antiinflammatory phospholipase. J Clin Invest. 1996;97:2784.

    Article  PubMed  CAS  Google Scholar 

  141. Hiramoto M, Yoshida H, Imaizumi T, Yoshimizu N, Satoh K. A mutation in plasma plateletactivating factor acetylhydrolase (Val279→Phe) is a genetic risk factor for stroke. Stroke. 1997;28:2417.

    Article  PubMed  CAS  Google Scholar 

  142. Yamada Y, Ichihara S, Fujimura T, Yokota M. Identification of the G994→T missense in exon 9 of the plasma platelet-activating factor acetylhydrolase gene as an independent risk factor for coronary artery disease in Japanese men. Metabolism. 1998;47:177.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Davies, S., McIntyre, T., Prescott, S., Zimmerman, G. (2000). Oxidized Phospholipids as Mediators of Vascular Disease. In: Keaney, J.F. (eds) Oxidative Stress and Vascular Disease. Developments in Cardiovascular Medicine, vol 224. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4649-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4649-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7103-8

  • Online ISBN: 978-1-4615-4649-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics