Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 224))

Abstract

Oxidative stress is generally thought to play an important contributory role in the pathogenesis of atherosclerosis. Although there are many determinants in the development of this disease, substantial in vitro evidence links the production of oxidized forms of LDL to molecular processes involved in atherogenesis (1–7). Depending on how LDL oxidation is initiated and the level of damage produced, a spectrum of damaged particles and biological effects are observed. Thus, LDL possessing low levels of oxidative damage induces the expression of chemoattractants and adhesion molecules, thereby facilitating tethering, activation and attachment of monocytes to endothelial cells (8–12). In addition, low level oxidative damage to LDL results in the formation of oxidized lipids that can impair the function of key elements of the anti-atherogenic reverse cholesterol transport pathway (13). More pronounced oxidative damage to LDL increases its atherogenicity by inhibiting endothelium-derived relaxing factor (14,15) and exerting cytotoxic effects (16,17). Moreover, oxidized LDL can induce foam cell formation, since after sufficient oxidative modification LDL is taken up by the poorly-regulated scavenger receptor pathway bypassing the cells normal cholesterol homeostatic mechanisms (18,19).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steinberg D, Witztum JL. Lipoproteins and atherogenes is: current concepts. JAMA. 1990;264:3047.

    Article  PubMed  CAS  Google Scholar 

  2. Haberland ME, Steinbrecher UP. “Modified Low-Density Lipoproteins: Diversity and Biological Relevance in Atherogenesis.” In Molecular Genetics of Coronary Artery Disease, Lusis AJ, Rotter JI, Sparkes RS, eds. Basel: Karger, 1992.

    Google Scholar 

  3. Navab M, Berliner JA, Watson AD, Hama SY, Territo MC, Lusis AJ, Shih DM, Van Lenten BJ, Frank JS, Demer LL, Edwards PA, Fogelman AM. The yin and yang of oxidation in the development of the fatty streak: a review based on the 1994 George Lyman Duff memorial lecture. Arterioscler Thromb Vasc Biol. 1996;16:831.

    Article  PubMed  CAS  Google Scholar 

  4. Jialal I, Devaraj S. Low-density lipoprotein oxidation, antioxidants, and atherosclerosis: a clinical biochemistry perspective. Clin Chem. 1996;42:498.

    PubMed  CAS  Google Scholar 

  5. Berliner JA, Heinecke JW. The role of oxidized lipoproteins in atherogenes is. Free Rad Biol Med. 1996;20:707.

    Article  PubMed  CAS  Google Scholar 

  6. Hajjar DP, Haberland ME. Lipoprotein trafficking in vascular cells: molecular Trojan horses and cellular saboteurs.J Biol Chem. 1997;272:22975.

    Article  PubMed  CAS  Google Scholar 

  7. Diaz MN, Frei B, Vita JA, Keaney JF Jr. Antioxidants and atherosclerotic heart disease. New Engl J Med. 1997;337:408.

    Article  PubMed  CAS  Google Scholar 

  8. Cushing SD, Berliner JA, Valente AJ, Territo MC, Navab M, Parhami F, Gerrity R, Schwartz CJ, Fogelman AM. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA. 1990;87:5134.

    Article  PubMed  CAS  Google Scholar 

  9. Rajavashisth TB, Andalibi A, Territo MC, Berliner JA, Navab M, Fogelman AM, Lusis AJ. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature. 1990;344:254.

    Article  PubMed  CAS  Google Scholar 

  10. Navab M, Imes SS, Hama SY, Hough GP, Ross LA, Bork RW, Valente AJ, Berliner JA, Drinkwater DC, Laks H, Fogelman AM. Monocyte transmigration induced by modification of low density lipoprotein in cocultures of human aortic wall cells is due to induction of monocyte chemotactic protein 1 synthesis and is abolished by high density lipoprotein. J Clin Invest. 1991;88:2039.

    Article  PubMed  CAS  Google Scholar 

  11. Frostegård J, Haegerstrand A, Gidlund M, Nilsson J. Biologically modified LDL increases the adhesive properties of endothelial cells. Atherosclerosis. 1991;90:119.

    Article  PubMed  Google Scholar 

  12. Schwartz D, Andalibi A, Chaverri-Almada L, Berliner JA, Kirchgessner T, Fang Z-T, Tekamp-Olson P, Lusis AJ, Gallegos C, Fogelman AM, Territo MC. Role of the GRO family of chemokines in monocyte adhesion to MM-LDL-stimulated endothelium. J Clin Invest. 1994;94:1968.

    Article  PubMed  CAS  Google Scholar 

  13. Bielicki JK, Forte TM, McCall MR. Minimally oxidized LDL is a potent inhibitor of lecithinxholesterol acyltransferase activity. J Lipid Res. 1996;37:1012.

    PubMed  CAS  Google Scholar 

  14. Kugiyama K, Kerns SA, Morrisett JD, Roberts R, Henry PD. Impairment of endotheliumdependent arterial relaxation by lysolecithin in modified low-density lipoproteins. Nature. 1990;344:160.

    Article  PubMed  CAS  Google Scholar 

  15. Chin JH, Azhar S, Hoffman BB. Inactivation of endothelial derived relaxing factor by oxidized lipoproteins. J Clin Invest. 1992;89:10.

    Article  PubMed  CAS  Google Scholar 

  16. Hessler JR, Morel DW, Lewis LJ, Chisolm GM. Lipoprotein oxidation and lipoprotein-induced cytotoxicity. Arteriosclerosis. 1983;3:215.

    Article  PubMed  CAS  Google Scholar 

  17. Kosugi K, Morel DW, DiCorleto PE, Chisolm GM. Toxicity of oxidized low-density lipoprotein to cultured fibroblasts is selective for S phase of the cell cycle. J Cell Physiol. 1987;130:311.

    Article  PubMed  CAS  Google Scholar 

  18. Steinbrecher UP. Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products. J Biol Chem. 1987;262:3603.

    PubMed  CAS  Google Scholar 

  19. Steinbrecher UP, Lougheed M, Kwan W-C, Dirks M. Recognition of oxidized low density lipoprotein by the scavenger receptor of macrophages results from derivatization of apolipoprotein B by products of fatty acid peroxidation. J Biol Chem. 1989;264:15216.

    PubMed  CAS  Google Scholar 

  20. Hoff HF, O’Neil J. Lesion-derived low density lipoprotein and oxidized low density lipoprotein share a lability for aggregation, leading to enhanced macrophage degradation. Arterioscler Thromb. 1991;11:1209.

    Article  PubMed  CAS  Google Scholar 

  21. Haberland ME, Fong D, Cheng L. Malondialdehyde-altered protein occurs in athero of Watanabe heritable hyperlipidemic rabbits. Science. 1988;241:215.

    Article  PubMed  CAS  Google Scholar 

  22. Ylä-Herttuala S, Palinski W, Rosenfeld ME, Parthasarathy S, Carew TE, Butler S, Witztum JL, Steinberg D. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest. 1989;84:1086.

    Article  PubMed  Google Scholar 

  23. Yang C-Y, Pownall HJ. Structure and function of apolipoprotein B. In: Structure and Function of Apolipoproteins (ed. Rosseneu M). Boca Raton: CRC Press, Inc., 1992 pp. 64.

    Google Scholar 

  24. Edelstein C. General properties of plasma lipoproteins and apolipoproteins. In: Biochemistry and Biology of Plasma Lipoproteins (eds. Scanu AM, Spector AA). New York: Marcel Dekker, Inc., 1986 pp. 495.

    Google Scholar 

  25. Dean RT, Fu S, Stocker R, Davies MJ. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J. 1997;324:1.

    PubMed  CAS  Google Scholar 

  26. Esterbauer H, Gebicki J, Puhl H, Jürgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Rad Biol Med. 1992;13:341.

    Article  PubMed  CAS  Google Scholar 

  27. Heery JM, Kozak M, Stafforini DM, Jones DA, Zimmerman GA, McIntyre TM, Prescott SM. Oxidatively modified LDL contains phospholipids with platelet-activating factor-like activity and stimulates the growth of smooth muscle cells. J Clin Invest. 1995;96:2322.

    Article  PubMed  CAS  Google Scholar 

  28. Fogelman AM, Shechter I, Seager J, Hokom M, Child JS, Edwards, PA. Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages. Proc Natl Acad Sci USA. 1980;77:2214.

    Article  PubMed  CAS  Google Scholar 

  29. Haberland ME, Fogelman AM, Edwards PA. Specificity of receptor-mediated recognition of malondialdehyde-modified low density lipoproteins. Proc Natl Acad Sci USA. 1982;79:1712.

    Article  PubMed  CAS  Google Scholar 

  30. Darley-Usmar V, Halliwell B: Blood radicals: reactive nitrogen species, reactive oxygen species, transition metal ions, and the vascular system. Pharm Res. 1996; 13:649.

    Article  PubMed  CAS  Google Scholar 

  31. Patel RP, Svistunenko D, Wilson MT, Darley-Usmar VM. Reduction of Cu(II) by lipid hydroperoxides: implications for the copper-dependent oxidation of low-density lipoprotein. Biochem J. 1997;322:425.

    PubMed  CAS  Google Scholar 

  32. Sattler W, Mohr D, Stocker R. Rapid isolation of lipoproteins and assessment of their peroxidation by high-performance liquid chromatography postcolumn chemiluminescence. Meth Enzymol. 1994;233:469.

    Article  PubMed  CAS  Google Scholar 

  33. Shwaery GT, Mowri H, Keaney JF Jr, Frei B. Preparation of lipid hydroperoxide-free low-density lipoproteins. Meth Enzymol. 1999;300:17.

    Article  PubMed  CAS  Google Scholar 

  34. Garner B, Dean RT, Jessup W. Human macrophage-mediated oxidation of low-density lipoprotein is delayed and independent of Superoxide production. Biochem J. 1994;301:421.

    PubMed  CAS  Google Scholar 

  35. Stocker R, Bowry VW, Frei B. Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does α-tocopherol. Proc Natl Acad Sci USA. 1991;88:1646.

    Article  PubMed  CAS  Google Scholar 

  36. Bowry VW, Stanley KK, Stocker R. High density lipoprotein is the major carrier of lipid hydroperoxides in human blood plasma from fasting donors. Proc Natl Acad Sci USA. 1992;89:10316.

    Article  PubMed  CAS  Google Scholar 

  37. Neuzil J, Thomas SR, Stocker R. Requirement for, promotion, or inhibition by α-tocopherol of radical-induced initiation of plasma lipoprotein lipid peroxidation. Free Rad Biol Med. 1997;22:57.

    Article  PubMed  CAS  Google Scholar 

  38. Chen K, Frei B. The effect of histidine modification on copper-dependent lipid peroxidation in human low-density lipoprotein. Redox Report. 1997;3:175.

    Google Scholar 

  39. Wagner P, Heinecke JW. Copper ions promote peroxidation of low density lipoprotein lipid by binding to histidine residues of apolipoprotein B100, but they are reduced at other sites on LDL. Arterioscler Thromb Vasc Biol. 1997;17:3338.

    Article  PubMed  CAS  Google Scholar 

  40. Proudfoot JM, Croft KD, Puddey IB, Beilin LJ. The role of copper reduction by α-tocopherol in low-density lipoprotein oxidation. Free Rad Biol Med. 1997;23:720.

    Article  PubMed  CAS  Google Scholar 

  41. Perugini C, Seccia M, Bagnati M, Cau C, Albano E, Bellomo G. Different mechanisms are progressively recruited to promote Cu(II) reduction by isolated human low-density lipoprotein undergoing oxidation. Free Rad Biol Med. 1998;25:519.

    Article  PubMed  CAS  Google Scholar 

  42. Ehrenwald E, Chisolm GM, Fox PL. Intact human ceruloplasmin oxidatively modifies low density lipoprotein. J Clin Invest. 1994;93:1493.

    Article  PubMed  CAS  Google Scholar 

  43. Kuzuya M, Yamada K, Hayashi T, Funaki C, Naito M, Asai K, Kuzuya F. Oxidation of low-density lipoprotein by copper and iron in phosphate buffer. Biochim Biophys Acta. 1991;1084:198.

    Article  PubMed  CAS  Google Scholar 

  44. Lynch SM, Frei B. Reduction of copper, but not iron, by human low density lipoprotein (LDL). J Biol Chem. 1995;270:5158.

    Article  PubMed  CAS  Google Scholar 

  45. Heinecke JW, Rosen H, Chait A. Iron and copper promote modification of low density lipoprotein by human arterial smooth muscle cells in culture. J Clin Invest. 1984;4:1890.

    Article  Google Scholar 

  46. Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci USA. 1984;81:3883.

    Article  PubMed  CAS  Google Scholar 

  47. Morel DW, DiCorleto PE, Chisolm GM. Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation. Arteriosclerosis. 1984;4:357.

    Article  PubMed  CAS  Google Scholar 

  48. Jessup W, Rankin SM, DeWhalley CV, Hoult JRS, Scott J, Leake DS. α-Tocopherol consumption during low-density-lipoprotein oxidation. Biochem J. 1990;265:399.

    PubMed  CAS  Google Scholar 

  49. Heinecke JW, Baker L, Rosen H, Chait A. Superoxide-mediated modification of low density lipoprotein by arterial smooth muscle cells. J Clin Invest. 1986;77:757.

    Article  PubMed  CAS  Google Scholar 

  50. Hiramatsu K, Rosen H, Heinecke JW, Wolfbauer G, Chait A. Superoxide initiates oxidation of low density lipoprotein by human monocytes. Arteriosclerosis. 1987;7:55.

    Article  PubMed  CAS  Google Scholar 

  51. Steinbrecher UP. Role of Superoxide in endothelial-cell modification of low-density lipoproteins. Biochim Biophys Acta. 1988;959:20.

    Article  PubMed  CAS  Google Scholar 

  52. Mukhopadhyay CK, Ehrenwald E, Fox PL. Ceruloplasmin enhances smooth muscle cell-and endothelial cell-mediated low density lipoprotein oxidation by a superoxide-dependent mechanism. J Biol Chem. 1996;271:14773.

    Article  PubMed  CAS  Google Scholar 

  53. Mukhopadhyay CK, Fox PL. Ceruloplasmin copper induces oxidant damage by a redox process utilizing cell-derived Superoxide as reductant. Biochemistry. 1998;37:14222.

    Article  PubMed  CAS  Google Scholar 

  54. Heinecke JW, Rosen H, Suzuki LA, Chait A. The role of sulfur-containing amino acids in Superoxide production and modification of low density lipoprotein by arterial smooth muscle cells. J Biol Chem. 1987;262:10098.

    PubMed  CAS  Google Scholar 

  55. Heinecke JW, Kawamura M, Suzuki L, Chait A. Oxidation of low density lipoprotein by thiols: superoxide-dependent and-independent mechanisms. J Lipid Res. 1993;34:2051.

    PubMed  CAS  Google Scholar 

  56. Sparrow CP, Olszewski J. Cellular oxidation of low density lipoprotein is caused by thiol production in media containing transition metal ions. J Lipid Res. 1993;34:1219.

    PubMed  CAS  Google Scholar 

  57. Graham A, Wood JL, O’Leary VJ, Stone D. Human (THP-1) macrophages oxidize LDL by a thiol-dependent mechanism. Free Rad Res. 1996;25:181.

    Article  CAS  Google Scholar 

  58. Wood JL, Graham A. Structural requirements for oxidation of low-density lipoprotein by thiols. FEBS Lett. 1995;366:75.

    Article  PubMed  CAS  Google Scholar 

  59. Garner B, van Reyk D, Dean RT, Jessup W. Direct copper reduction by macrophages. Its role in low density lipoprotein oxidation.J Biol Chem. 1997;272:6927.

    Article  PubMed  CAS  Google Scholar 

  60. Frei B, Stocker R, Ames B. Antioxidant defenses and lipid peroxidation in human blood plasma. Proc Natl Acad Sci USA. 1988;85:9748.

    Article  PubMed  CAS  Google Scholar 

  61. Dabbagh AJ, Frei B. Human suction blister interstitial fluid prevents metal ion-dependent oxidation of low density lipoprotein by macrophages and in cell-free systems. J Clin Invest. 1995;96:1958.

    Article  PubMed  CAS  Google Scholar 

  62. Stocker R, Frei B. Endogenous antioxidant defenses in human blood plasma. In: Oxidative Stress: Oxidants and Antioxidants (ed. Sies H). London: Academic Press Limited, 1991 pp. 213.

    Google Scholar 

  63. Darley-Usmar V, Halliwell B: Blood radicals: reactive nitrogen species, reactive oxygen species, transition metal ions, and the vascular system. Pharm Res. 1996; 13:649.

    Article  PubMed  CAS  Google Scholar 

  64. Williams KJ, Tabas I. The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol. 1995;15:551.

    Article  PubMed  CAS  Google Scholar 

  65. Hurt-Camejo E, Olsson U, Wiklund O, Gondjers G, Camejo G. Cellular consequences of the association of apoB lipoproteins with proteoglycans. Arterioscler Thromb Vace Biol. 1997;17:1011.

    Article  CAS  Google Scholar 

  66. Quinn MT, Parthasarathy S, Fong LG, Steinberg D. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci USA. 1987;84:2995.

    Article  PubMed  CAS  Google Scholar 

  67. Evans PJ, Smith C, Mitchinson MJ, Halliwell B. Metal ion release from mechanicallydisrupted human arterial wall. Implications for the development of atherosclerosis. Free Rad Res. 1995;23:465.

    Article  CAS  Google Scholar 

  68. Lamb DJ, Mitchinson MJ, Leake DS. Transition metal ions within human atherosclerotic lesions can catalyse the oxidation of low density lipoprotein by macrophages. FEBS Lett. 1995;374:12.

    Article  PubMed  CAS  Google Scholar 

  69. Leeuwenburgh C, Rasmussen JE, Hsu FF, Mueller DM, Pennathur S, Heinecke JW. Mass spectrometric quantification of markers for protein oxidation by tyrosyl radical, copper, and hydroxyl radical in low density lipoprotein isolated from human atherosclerotic plaques. J Biol Chem. 1997;272:3520.

    Article  PubMed  CAS  Google Scholar 

  70. Fu S, Davies MJ, Stocker R, Dean RT. Evidence for roles of radicals in protein oxidation in advanced human atherosclerotic plaque. Biochem J. 1998;333:519.

    PubMed  CAS  Google Scholar 

  71. Belkner J, Wiesner R, Rathman J, Barnett J, Sigal E, Kühn H. Oxygenation of lipoproteins by mammalian lipoxygenases. Eur J Biochem. 1993;213:251.

    Article  PubMed  CAS  Google Scholar 

  72. Wetterholm A, Samuelsson B. “The Lipoxygenase System.” In Oxidative Processes and Antioxidants, R Paoletti et al., eds. New York: Raven Press, Ltd., 1994.

    Google Scholar 

  73. Feinmark SJ, Cornicelli JA. Is there a role for 15-lipoxygenase in atherogenesis? Biochem Pharm. 1997;54:953.

    Article  PubMed  CAS  Google Scholar 

  74. Kühn H, Chan L. The role of 15-lipoxygenase in atherogenesis: pro-and antiatherogenic actions. Curr Opin Lipidol. 1997;8: 111.

    Article  PubMed  Google Scholar 

  75. Funk CD: The molecular biology of mammalian lipoxygenases and the quest for eicosanoid functions using lipoxygenase-deficient mice. Biochim Biophys Acta. 1996; 1304:65.

    Article  PubMed  Google Scholar 

  76. Lass A, Belkner J, Esterbauer H, Kühn H. Lipoxygenase treatment renders low-density lipoprotein susceptible to Cu2+-catalysed oxidation. Biochem J. 1996;314:577.

    PubMed  CAS  Google Scholar 

  77. Upston JM, Neuzil J, Witting PK, Alleva R, Stocker R. Oxidation of free fatty acids in low density lipoprotein by 15-lipoxygenase stimulates nonenzymic, a-tocopherol-mediated peroxidation of cholesteryl esters. J Biol Chem. 1997;272:30067.

    Article  PubMed  CAS  Google Scholar 

  78. Neuzil J, Upston JM, Witting PK, Scott KF, Stocker R. Secretory phospholipase A2 and lipoprotein lipase enhance 15-lipoxygenase-induced enzymic and nonenzymic lipid peroxidation in low-density lipoproteins. Biochemistry. 1998;37:9203.

    Article  PubMed  CAS  Google Scholar 

  79. Belkner J, Stender H, Kühn H. The rabbit 15-lipoxygenase preferentially oxygenates LDL cholesterol esters, and this reaction does not require vitamin E. J Biol Chem. 1998;273:23225.

    Article  PubMed  CAS  Google Scholar 

  80. Upston JM, Neuzil J, Stocker R. Oxidation of LDL by recombinant human 15-lipoxygenase: evidence for α-tocopherol-dependent oxidation of esterified core and surface lipids. J Lipid Res. 1996;37:2650.

    PubMed  CAS  Google Scholar 

  81. Folcik VA, Aamir R, Cathcart MK. Cytokine modulation of LDL oxidation by activated human monocytes. Arterioscler Thromb Vasc Biol. 1997;17:1954.

    Article  PubMed  CAS  Google Scholar 

  82. Sun D, Funk CD. Disruption of 12/15-lipoxygenase expression in peritoneal macrophages: enhanced utilization of the 5-lipoxygenase pathway and diminished oxidation of low density lipoprotein. J Biol Chem. 1996;271:24055.

    Article  PubMed  CAS  Google Scholar 

  83. Benz DJ, Mol M, Ezaki M, Mori-Ito N, Zelán I, Miyanohara A, Friedmann T, Parthasarathy S, Steinberg D, Witztum JL. Enhanced levels of lipoperoxides in low density lipoprotein incubated with murine fibroblasts expressing high levels of human 15-lipoxygenase. J Biol Chem. 1995;270:5191.

    Article  PubMed  CAS  Google Scholar 

  84. Sigari F, Lee C, Witztum JL, Reaven PD. Fibroblasts that overexpress 15-lipoxygenase generate bioactive and minimally modified LDL. Arterioscler Thromb Vasc Biol. 1997;17:3639.

    Article  PubMed  CAS  Google Scholar 

  85. Kühn H, Belkner J, Zaiss S, Fährenklemper T, Wohlfeil S. Involvement of 15-lipoxygenase in early stages of atherogenesis. J Exp Med. 1994;179:1903.

    Article  PubMed  Google Scholar 

  86. Folcik VA, Nivar-Aristy RA, Krajewski LP, Cathcart MK. Lipoxygenase contributes to the oxidation of lipids in human atherosclerotic plaques. J Clin Invest. 1995;96:504.

    Article  PubMed  CAS  Google Scholar 

  87. Kühn H, Heydeck D, Hugou I, Gniwotta C. In vivo action of 15-lipoxygenase in early stages of human atherogenesis. J Clin Invest. 1997;99:8883.

    Article  Google Scholar 

  88. Gniwotta C, Morrow JD, Roberts LJ II, Kühn H. Prostaglandin F2-like compounds, F2-isoprostanes, are present in increased amounts in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 1997;17:3236.

    Article  PubMed  CAS  Google Scholar 

  89. Ylä-Herttuala S, Rosenfeld ME, Parthasarathy S, Glass CK, Sigal E, Witztum JL, Steinberg D. Colocalization of 15-lipoxygenase mRNA and protein with epitopes of oxidized low density lipoprotein in macrophage-rich areas of atherosclerotic lesions. Proc Natl Acad Sci USA. 1990;87:6959.

    Article  PubMed  Google Scholar 

  90. Ylä-Herttuala S, Rosenfeld ME, Parthasarathy S, Sigal E, Särkioja T, Witztum JL, Steinberg D. Gene expression in macrophage-rich human atherosclerotic lesions: 15-lipoxygenase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid-protein adducts. J Clin Invest. 1991;87:1146.

    Article  PubMed  Google Scholar 

  91. Hiltunen T, Luoma J, Nikkari T, Ylä-Herttuala S. Induction of 15-lipoxygenase mRNA and protein in early atherosclerotic lesions. Circulation. 1995;92:3297.

    Article  PubMed  CAS  Google Scholar 

  92. Ylä-Herttuala S, Luoma J, Viita H, Hiltunen T, Sisto T, Nikkari T. Transfer of 15-lipoxygenase gene into rabbit iliac arteries results in the appearance of oxidation-specific lipidprotein adducts characteristic of oxidized low density lipoprotein. J Clin Invest. 1995;95:2692.

    Article  PubMed  Google Scholar 

  93. Harats D, Kurihara H, Belloni P, Oakley H, Ziober A, Ackley D, Cain G, Kurihara Y, Lawn R, Sigal E. Targeting gene expression to the vascular wall in transgenic mice using the murine preproendothelin-1 promoter. J Clin Invest. 1995;95:1335.

    Article  PubMed  CAS  Google Scholar 

  94. Tillman C, Witztum JL, Rader DJ, Tangirala R, Fazio S, Linton MF, Funk CD. Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J Clin Invest. 1999;103:1597.

    Article  Google Scholar 

  95. Shen J, Herderick E, Cornhill JF, Zsigmond E, Kim H-S, Kühn H, Guevara, NV, Chan L. Macrophage-mediated 115-lipoxygenase expression protects against atherosclerosis development. J Clin Invest. 1996;98:2201.

    Article  PubMed  CAS  Google Scholar 

  96. Sendobry SM, Cornicelli JA, Welch K, Bocan T, Tait B, Trivedi BK, Colbry N, Dyer RD, Feinmark SJ, Daugherty A. Attenuation of diet-induced atherosclerosis in rabbits with a highly selective 15-lipoxygenase inhibitor lacking significant antioxidant properties. Brit J Pharm. 1997;120:1199.

    Article  CAS  Google Scholar 

  97. Bocan TMA, Rosebury WS, Mueller SB, Kuchera S, Welch K, Daugherty A, Cornicelli JA. A specific 15-lipoxygenase inhibitor limits the progression and monocyte-macrophage enrichment of hypercholesterolemia-induced atherosclerosis in the rabbit. Atherosclerosis. 1998;136:203.

    Article  PubMed  CAS  Google Scholar 

  98. Koppenol WH. The basic chemistry of nitrogen monoxide and peroxynitrite. Free Rad Biol Med. 1998;25:385.

    Article  PubMed  CAS  Google Scholar 

  99. Squadrito GL, Pryor WA. Oxidative ch emistry of nitric oxide: the roles of Superoxide, peroxynitrite, and carbon dioxide. Free Rad Biol Med. 1998;25:392.

    Article  PubMed  CAS  Google Scholar 

  100. Wink DA, Mitchell JB. Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanism of nitric oxide. Free Rad Biol Med. 1998;25:434.

    Article  PubMed  CAS  Google Scholar 

  101. Graham A, Hogg N, Kalyanaraman B, O’Leary V, Darley-Usmar V, Moncada S. Peroxynitrite modification of low-density lipoprotein leads to recognition by the macrophage scavenger receptor. FEBS Lett. 1993;330:181.

    Article  PubMed  CAS  Google Scholar 

  102. Moore KP, Darley-Usmar V, Morrow J, Roberts LJ II. Formation of F2-isoprostanes during oxidation of human low-density lipoprotein and plasma by peroxynitrite. Circ Res. 1995;77:335.

    Article  PubMed  CAS  Google Scholar 

  103. Thomas SR, Davies MJ, Stocker R: Oxidation and antioxidation of human low-density lipoprotein and plasma exposed to 3-morpholinosydnonimine and reagent peroxynitrite. Chem Res Toxicol. 1998; 1:484.

    Article  Google Scholar 

  104. Uppu RM, Squadrito GL, Pryor WA. Acceleration of peroxynitrite oxidations by carbon dioxide. Arch Biochem Biophys. 1996;327:335.

    Article  PubMed  CAS  Google Scholar 

  105. Kooy NW, Royall JA. Agonist-induced peroxynitrite production from endothelial cells. Arch Biochem Biophys. 1994;310:352.

    Article  PubMed  CAS  Google Scholar 

  106. Carreras MC, Pargament GA, Catz SD, Poderoso JJ, Boveris A. Kinetics of nitric oxide and hydrogen peroxide production and formation of peroxynitrite during the respiratory burst of human neutrophils. FEBS Lett. 1994;341:65.

    Article  PubMed  CAS  Google Scholar 

  107. Xia Y, Zweier JL. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc Natl Acad Sci USA. 1997;94:6954.

    Article  PubMed  CAS  Google Scholar 

  108. Hogg N, Kalyanaraman B, Joseph J, Struck A, Parthasarathy S. Inhibition of low-density lipoprotein oxidation by nitric oxide: potential role in atherogenesis. FEBS Lett. 1993;334:170.

    Article  PubMed  CAS  Google Scholar 

  109. Goss, SPA, Hogg N, Kalyanaraman B. The effect of nitric oxide release rates on the oxidation of human low density lipoprotein. J Biol Chem. 1997;272:21647.

    Article  PubMed  CAS  Google Scholar 

  110. Jessup W, Mohr D, Gieseg SP, Dean RT, Stocker R. The participation of nitric oxide in cell free-and its restriction of macrophage-mediated oxidation of low-density lipoprotein. Biochim Biophys Acta. 1992;1180:73.

    Article  PubMed  CAS  Google Scholar 

  111. Luoma JS, Strålin P, Marklund SL, Hiltunen TP, Särkioja T, Ylä-Herttuala: Expression of extracellular SOD and iNOS in macrophages and smooth muscle cells in human and rabbit atherosclerotic lesions: colocalization with epitopes characteristic of oxidized LDL and peroxynitrite-modified proteins. Arterioscler Thromb Vasc Biol. 1998; 18:157.

    Article  PubMed  CAS  Google Scholar 

  112. Buttery LD, Springall DR, Chester AH, Evans TJ, Standfield EN, Parums DV, Yacoub MH, Polak JM. Inducible nitric oxide synthase is present within human atherosclerotic lesions and promotes the formation and activity of peroxynitrite. Lab Invest. 1996;75:77.

    PubMed  CAS  Google Scholar 

  113. Khan J, Brennan DM, Bradley N, Gao B, Bruckdorfer R, Jacobs M. 3-Nitrotyrosine in the proteins of human plasma determined by an ELISA method. Biochem J. 1998;330:795.

    PubMed  CAS  Google Scholar 

  114. Halliwell B. What nitrates tyrosine? Is nitrotyrosine specific as a biomarker of peroxynitrite formation in vivo? FEBS Lett. 1997;411:157.

    Article  PubMed  CAS  Google Scholar 

  115. Kettle AJ, van Dalen CJ, Winterbourn CC. Peroxynitrite and myeloperoxidase leave the same footprint in protein nitration. Redox Rep. 1997;3:257.

    PubMed  CAS  Google Scholar 

  116. Eiserich JP, Hristova M, Cross CE, Jones AD, Freeman BA, Halliwell B, van der Vliet A. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature. 1998;391:393.

    Article  PubMed  CAS  Google Scholar 

  117. Sampson JB, Ye YZ, Rosen H, Beckman JS. Myeloperoxidase and horseradish peroxidase catalyze tyrosine nitration in proteins from nitrite and hydrogen peroxide. Arch Biochem Biophys. 1998;356:207.

    Article  PubMed  CAS  Google Scholar 

  118. Heinecke JW. Pathways for oxidation of low density lipoprotein by myeloperoxidase: tyrosyl radical, reactive aldehydes, hypochlorous acid and molecular chlorine. BioFactors. 1997;6:145.

    Article  PubMed  CAS  Google Scholar 

  119. Winterbourn CC. Neutrophil oxidants: production and reactions. In: Oxygen Radicals: Systemic Events and Disease Processes (eds. Das DK, Essman WB). Basel: S Karger AG, pp. 32–70, 1990.

    Google Scholar 

  120. Hazell LJ, Stocker R. Oxidation of low-density lipoprotein with hypochlorite causes transformation of the lipoprotein into a high-uptake form for macrophages. Biochem J. 1993;290:165.

    PubMed  CAS  Google Scholar 

  121. Hazell LJ, van den Berg JJM, Stocker R. Oxidation of low-density lipoprotein by hypochlorite causes aggregation that is mediated by modification of lysine residues rather than lipid oxidation. Biochem J. 1994;302:297.

    PubMed  CAS  Google Scholar 

  122. Jerlich A, Fabjan JS, Tschabuschnig S, Smirnova AV, Horakova L, Hayn M, Auer H, Guttenberger H, Leis H-J, Tatzber F, Waeg G, Schaur RJ. Human low density lipoprotein as a target of hypochlorite generated by myeloperoxidase. Free Rad Biol Med. 1998;24:1139.

    Article  PubMed  CAS  Google Scholar 

  123. Anderson MM, Hazen SL, Hsu FF, Heinecke JW. Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein: a mechanism for the generation of highly reactive α-hydroxy and α,β-unsaturated aldehydes by phagocytes at sites of inflammation. J Clin Invest. 1997;99:424.

    Article  PubMed  CAS  Google Scholar 

  124. Hazen SL, Crowley JR, Mueller DM, Heinecke JW. Mass spectrometric quantification of 3-chlorotyrosine in human tissues with attomole sensitivity: a sensitive and specific marker for myeloperoxidase-catalyzed chlorination at sites of inflammation. Free Rad Biol Med. 1997;23:909.

    Article  PubMed  CAS  Google Scholar 

  125. Panasenko OM. The mechanism of the hypochlorite-induced lipid peroxidation. BioFactors. 1997;6:181.

    Article  PubMed  CAS  Google Scholar 

  126. Hazen SL, Hsu FF, Duffin K, Heinecke JW. Molecular chlorine generated by the myeloperoxidase-hydrogen peroxide-chloride system of phagocytes converts low density lipoprotein cholesterol into a family of chlorinated sterols. J Biol Chem. 1996;271:23080.

    Article  PubMed  CAS  Google Scholar 

  127. Hawkins CL, Davies MJ. Degradation of hyaluronic acid, poly-and mono-saccharides, and model compounds by hypochlorite: evidence for radical intermediates and fragmentation. Free Rad Biol Med. 1998;24:1396.

    Article  PubMed  CAS  Google Scholar 

  128. Wieland E, Brandes A, Armstrong VW, Oellerich M. Oxidative modification of low density lipoproteins by human polymorphonuclear leukocytes. Eur J Clin Chem Clin Biochem. 1993;31:725.

    PubMed  CAS  Google Scholar 

  129. Katsura M, Forster LA, Ferns GAA, Änggård EE: Oxidative modification of low-density lipoprotein by human polymorphonuclear leucocytes to a form recognised by the lipoprotein scavenger pathway. Biochim Biophys Acta. 1994; 1213:231.

    Article  PubMed  CAS  Google Scholar 

  130. Cathcart MK, Morel DW, Chisolm GM III. Monocytes and neutrophils oxidize low density lipoprotein making it cytotoxic. J Leukoc Biol 1985;38:341–350.

    PubMed  CAS  Google Scholar 

  131. Tanabe F, Sato A, Ito M, Ishida E, Ogata M, Shigeta S. Low-density lipoprotein oxidized by polymorphonuclear leukocytes inhibits natural killer cell activity. J Leukoc Biol. 1988;43:204.

    PubMed  CAS  Google Scholar 

  132. Scaccini C, Jialal I. LDL modification by activated polymorphonuclear leukocytes: a cellular model ofmild oxidative stress. Free Rad Biol Med. 1994;16:49.

    Article  PubMed  CAS  Google Scholar 

  133. Savenkova MI, Mueller DM, Heinecke JW. Tyrosyl radical generated by myeloperoxidase is a physiological catalyst for the initiation of lipid peroxidation in low density lipoprotein. J Biol Chem. 1994;269:20394.

    PubMed  CAS  Google Scholar 

  134. Jacob JS, Cistola DP, Hsu FF, Muzaffar S, Mueller DM, Hazen SL, Heinecke JW. Human phagocytes employ the myeloperoxidase-hydrogen peroxide system to synthesize dityrosine, trityrosine, pulcherosine, and isodityrosine by a tyrosyl radical-dependent pathway. J Biol Chem. 1996;271:19950.

    Article  PubMed  CAS  Google Scholar 

  135. Hazen SL, Hsu FF, Heinecke JW. p-Hydroxyphenylacetaldehyde is the major product of L-tyrosine oxidation by activated human phagocytes: a chloride-dependent mechanism for the conversion of free amino acids into reactive aldehydes by myeloperoxidase. J Biol Chem. 1996;271:1861.

    Article  PubMed  CAS  Google Scholar 

  136. Hazen SL, Gaut JP, Hsu FF, Crowley JR, d’Avignon A, Heinecke JW. p-Hydroxyphenylacetaldehyde, the major product of L-tyrosine oxidation by the myeloperoxidase-H2O2-chloride system of phagocytes, covalently modifies e-amino groups of protein lysine residues. J Biol Chem. 1997;272;16990.

    Article  PubMed  CAS  Google Scholar 

  137. Daugherty A, Dunn JL, Rateri DL, Heinecke JW. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest. 1994;94:437.

    Article  PubMed  CAS  Google Scholar 

  138. Malle E, Hazell L, Stocker R, Sattler W, Esterbauer H, Waeg G. Immunologic detection and measurement of hypochlorite-modified LDL with specific monoclonal antibodies. Arterioscler Thromb Vasc Biol. 1995;15:982.

    Article  PubMed  CAS  Google Scholar 

  139. Hazell LJ, Arnold L, Flowers D, Waeg G, Malle E, Stocker R. Presence of hypochloritmodified proteins in human atherosclerotic lesions. J Clin Invest. 1996;97:1535.

    Article  PubMed  CAS  Google Scholar 

  140. Hazen SL, Heinecke JW. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest. 1997;99:2075.

    Article  PubMed  CAS  Google Scholar 

  141. Suarna C, Dean RT, May J, Stocker R. Human atherosclerotic plaque contains both oxidized lipids and relatively large amounts of α-tocopherol and ascorbate. Arterioscler Thromb Vasc Biol 1995;15:1616.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

McCall, M.R., Frei, B. (2000). Mechanisms of LDL Oxidation. In: Keaney, J.F. (eds) Oxidative Stress and Vascular Disease. Developments in Cardiovascular Medicine, vol 224. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4649-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4649-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7103-8

  • Online ISBN: 978-1-4615-4649-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics