Skip to main content

Abstract

Groundwater is an increasingly important water resource in arid or semi-arid regions, as well as a conjunctive resource in humid environments. Because of the long residence time for groundwater in the hydrologic cycle, the last few decades have seen expanding study of groundwater systems. It is therefore important to continually refine our interpretation of hydrogeologic, geochemical and isotopic data to better understand the spatial and temporal movement of water in the subsurface. With our ever-increasing understanding of the magnitude of climate variations during the last 40 000 years and the impact of our industrialised society on groundwater quality and quantity, hydrogeologists will continue to require more information about the rate of groundwater movement on scales from the subannual to millenium. The 5730 year half-life of 14C and the ubiquity of carbon (as organic and inorganic forms) in groundwater, makes it a potentially ideal tracer on these timescales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Actar E.M. and Neuman S.P. (1988) Estimation of spatial recharge distribution using environmental isotopes and hydrochemical data, I Mathematical model and application to synthetic data. J. Hydrol. 97, 297–302.

    Google Scholar 

  • Anderson T.W., Freethy G.W. and Tucci P. (1990) Geohydrology and water resources of alluvial basins in south-central Arizona and parts of adjacent States. U.S. Geological Survey, Open File Report 89-378, 99 pp.

    Google Scholar 

  • Aravena R., Wassenaar L.I. and Plummer L.N. (1995) Estimating C-14 groundwater ages in a methanogenic aquifer. Water Resour. Res. 31, 2307–2317.

    Article  CAS  Google Scholar 

  • Busenberg E. and Plummer L.N. (1992) Use of chlorofluorocarbons (CC13F and CCL2F2) as hydrologic tracers and age-dating tools: the alluvium and terrace system of central Oklahoma. Water Resour. Res. 28(9), 2257–2283.

    Article  CAS  Google Scholar 

  • Campana M.F. and Simpson E.S. (1984) Groundwater residence times and discharge rates using discrete-state compartment model and 14C data. J. Hydrol. 72, 171–185.

    Article  Google Scholar 

  • Deines P., Langmiur D. and Harmon R.S. (1974) Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate groundwaters. Geochim. Cosmochim. Acta. 38, 1147–1164.

    Article  CAS  Google Scholar 

  • de Vries H. (1958) Variation in the concentration of radiocarbon with time and location on earth. Konicklijke Nederlandse Akademie van Wetenschappen B61, 94 pp.

    Google Scholar 

  • Eriksson R. (1958) The possible use of tritium for estimating groundwater storage. Tellus 10, 472–478.

    Article  CAS  Google Scholar 

  • Eichinger L. (1983) A contribution to the interpretation of 14C groundwater ages considering the example of a partially confined sandstone aquifer. Radiocarbon 25(2), 347–356.

    CAS  Google Scholar 

  • Fontes J.-C. and Garnier J.M. (1979) Determination of the initial 14C activity of the total dissolved carbon: a review of the existing models and a new approach. Water Resour. Res. 15, 399–413.

    Article  Google Scholar 

  • Garrels R.M. and Thompson M.E. (1962) A chemical model for seawater at 25°C and one atmosphere total pressure. Am. J. Sci. 260 57–66.

    Article  CAS  Google Scholar 

  • Grathwohl P. (1998) Slow contaminant release: the necessity for enhanced/natural attenuation. In Groundwater Quality: Remediation and Protection, eds. M. Herbert and K. Kovar, pp. 265-271. IAHS Publ. No.250.

    Google Scholar 

  • Hall J.A., Kalin R.M., Larkin M.J., Allen C.C.R. and Harper D.B. (1999) Variation in stable carbon isotope fractionation during aerobic degradation of phenol and benzoate by contaminant degrading bacteria. Org. Geochem., in press.

    Google Scholar 

  • Hall J.A., Barth J. and Kalin R.M. (1999) Routine high precision GC-MS-IRMS carbon isotopic analysis to +/-0.1 permil. Rapid Comm. Mass Sped. 13(13), 1231–1236.

    Article  CAS  Google Scholar 

  • Ingerson R. and Pearson F.J. (1964) Estimation of age and rate of motion of groundwater by the 14C method. In Recent Research in the Field of Hydrosphere, Atmosphere and Nuclear Geochemistry, eds. Y. Miyake and T. Koyama, pp. 263–283. Marusen, Tokyo.

    Google Scholar 

  • Kalin R.M. (1994) The hydrogeochemical evolution of groundwater in the Tucson Basin, Arizona, with application to 3D groundwater flow modelling. Unpubl. PhD thesis, University of Arizona, 510 pp.

    Google Scholar 

  • Kalin R.M. and Long A. (1994) Application of hydrogeochemical modelling for validation of hydrologic flow modelling in the Tucson Basin Aquifer, Arizona, USA. Mathematical Models and their Applications to Isotope Studies in Groundwater Hydrology, IAEA TECDOC-777, pp.209–254. IAEA, Vienna.

    Google Scholar 

  • Kalin R.M. (1995) Basic concepts and formulations for isotope-geochemical process investigations, procedures and methodologies of geochemical modelling of groundwater systems. Manual on Mathematical Models in Isotope Hydrology, IAEA TECHDOC 910, pp. 155–206. IAEA, Vienna.

    Google Scholar 

  • Kalin R.M. and Roberts C. (1997) Groundwater resources of the Lagan Valley, Northern Ireland. J. Chartered Inst. Water Environ. Manage. 11(4), 133–139.

    Article  CAS  Google Scholar 

  • Kattan Z. (1996) Chemical and environmental isotope study of the fissured basalt aquifer system of Yarmouk Basin, Syria. Isotope Field Applications for Groundwater Studies in the Middle East, IAEA Techdoc 890, pp.151–183. IAEA, Vienna.

    Google Scholar 

  • Lesniak P.M. and Sakai H. (1990) Carbon isotope fractionation between dissolved carbonate and CO2 (g) at 25°C and 40°C. Earth Planet. Sci. Lett. 95, 297–301.

    Article  Google Scholar 

  • Levin I., Kromer B., Schoch-Fischer H., Bruns M., Munnich M., Berdau D., Vogel J.C. and Munnich K.O. (1985) The effect of anthropogenic CO2 and 14C sources on the distribution of 14C in the atmosphere. Radiocarbon 27(1), 1–19.

    CAS  Google Scholar 

  • Libby W.F., Anderson E.C. and Arnold J.R. (1949) Age determination by radiocarbon content: world-wide assay of natural radiocarbon. Science 109, 227.

    Article  CAS  Google Scholar 

  • Libby W. (1952) Radiocarbon Dating. University of Chicago Press.

    Google Scholar 

  • Long A. and Kalin R. (1990) A suggested quality assurance protocol for radiocarbon dating laboratories. Radiocarbon 32(3), 329–334.

    Google Scholar 

  • Long A., Murphy E.M., Davis S.N. and Kalin R.M. (1992) Natural 14C in DOC in groundwater. In Radiocarbon after Four Decades: An Interdisciplinary Perspective, eds. R.E Taylor, A. Long and R.S. Kra, pp.288–308. Springer-Verlag, New York.

    Google Scholar 

  • Long A., Warneke L.A., Betancourt J.L. and Thompson R.S. (1990) Deuterium variation in plant cellulose from fossil packrat middens. In Packrate Middens: The Last 40,000 Years of Biotic Change, eds. J.L Betancourt, T.R. VanDevender and P.S. Martin, pp.380-397. University of Arizona Press.

    Google Scholar 

  • Long A., Eastoe C.J. and Kalin R.M. (1999) Distribution of tritium in the groundwater of the Tucson Basin, Arizona. EGS Meeting Geophysical Research Abstracts 1(2).

    Google Scholar 

  • Manning M.R., Lowe D.C., Melhuish W.H., Sparks R.J., Wallace G., Brenninkmeijer C.A.M. and McGill R.C. (1990) The use of radiocarbon measurements in atmospheric studies. Radiocarbon 32(1), 37–58.

    Google Scholar 

  • Maloszewski P. and Zuber A. (1992) Principles and practice of calibration and validation of mathematical models for the interpretation of environmental tracer data in aquifers. Adv. Water Res. 15, 47–62.

    Article  Google Scholar 

  • Maloszewski P., Rauret W., Timborn P., Herrmann A. and Rau R. (1992) Isotope hydrologic study of mean transit times in an alpine basin. J. Hydrol. 140, 343–360.

    Article  CAS  Google Scholar 

  • Megans L., Van Der Plicht J. and Leeuw J.W. (1998) Molecular, radioactive and stable carbon isotope characterization of estuarine paniculate organic matter. Radiocarbon 40(2), 985–990.

    Google Scholar 

  • Mook W.G., Bommerson J.C. and Staverman W.H. (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett. 22, 169–176.

    Article  CAS  Google Scholar 

  • Mook W.G. (1980) The dissolution-exchange model for dating of groundwater with 14C. In Handbook of Environmental Isotopes Geochemistry,Vol. 1, eds. P. Fritz and J.-C. Fontes, pp. 50–74. Elsevier, Amsterdam.

    Google Scholar 

  • Murphy E.M. (1987) Carbon-14 measurements and characterization of dissolved organic carbon in groundwater. Unpubl. PhD thesis, University of Arizona, 180pp.

    Google Scholar 

  • Murphy E.M., Davis S.N., Long A., Donahue D. and Jull A.J.T. (1989) 14C in fractions of dissolved organic carbon in groundwater. Nature 337, 153–155.

    Article  CAS  Google Scholar 

  • Nydal R. and Lovseth K. (1983) Tracing bomb 14C in the atmosphere 1962–1980. J. Geophys. Res. 99, 3621–3642.

    Article  Google Scholar 

  • Parkhurst D.L. (1995) User’s guide to PHREEQC-A computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations. U.S. Geological Survey, Water Resources Investigations Report 95-4227, 143 pp.

    Google Scholar 

  • Parkhurst D.L. (1997) Geochemical mole-balance modeling with uncertain data. Water Resour. Res. 33(8), 1957–1970.

    Article  CAS  Google Scholar 

  • Parkhurst D.L. and Plummer L.N. (1993) Geochemical Models. In Regional Groundwater Quality, ed. W.M. Alley, pp. 199–225. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Pearson F.J. (1992) Effects of parameter uncertainty in modeling 14C in groundwater. In Radiocarbon after Four Decades: An Interdisciplinary Perspective, eds. R. Taylor, A. Long and R. Kra, pp.262–275. Springer-Verlag, New York.

    Google Scholar 

  • Pessenda L.C.R., Gouveia S.E.M., Aravena R., Gomes B.M., Boulet R. and Ribeiro A.S. (1998) 14C dating and stable carbon isotopes of soil organic matter in forest-savannah boundary areas in the Southern Brazilian Amazon region. Radiocarbon 40(2), 1013–1022.

    CAS  Google Scholar 

  • Phillips F.M., Tanset M.K. and Peeters L.A. (1989) An isotopic investigation of groundwater in the central San Juan Basin, New Mexico — Carbon 14 dating as a basis for numerical flow modeling. Water Resour. Res. 25(10), 2259–2273.

    Article  CAS  Google Scholar 

  • Plummer L.N., Parkhurst D.L. and Thorstenson D.C. (1983) Development of reation models for groundwater systems. Geochem. Cosmochim. Acta 47, 655–686.

    Article  Google Scholar 

  • Plummer L.N., Busby J.F., Lee R.W. and Hanshaw B.B. (1990) Geochemical modeling of the Madison aquifer in parts of Montana, Wyoming and South Dakota. Water Resour. Res. 26(9), 981–2014.

    Article  Google Scholar 

  • Plummer L.N., Prestemon E.C. and Parkhurst D.L. (1994) An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH — Version 2.0. U.S. Geological Survey, Water Resources Investigations Report 94-4169, 130 pp.

    Google Scholar 

  • Plummer L.N., Busenberg E., Drenkard S., Schlosser P., McConnell J.B., Michel R.L., Ekwurzel B. and Weppernig R. (1998) Flow of river water into a karstic limestone aquifer — 2. Dating the young fraction of groundwater mixtures in the upper Floridan aquifer near Valdosta, Georgia. Appl. Geochem. 13(8), 1017–1043.

    Article  CAS  Google Scholar 

  • Purdy C.B., Burr G.S., Rubin M., Helz G.R. and Mignerey A.C. (1992) Dissolved organic and inorganic 14C concentrations and ages for Coastal Plain Aquifers in Southern Maryland. Radiocarbon 34(3), 654–663.

    CAS  Google Scholar 

  • Reilly T.E., Plummer L.N., Phillips P.J. and Busenberg E. (1994) The use of simulation and multiple environmental tracers to quantify groundwater flow in a shallow aquifer. Water Resour. Res. 30(2), 421–433.

    Article  Google Scholar 

  • Reugner H., Kleineidan S. and Grathwohl P. (1999) Long-term sorption kinetics of phenathrene in aquifer materials. Environ. Sci. Technol. 33(10), 1645–1651.

    Article  Google Scholar 

  • Robertson F.N. (1992) 14C dating of groundwater in SE Arizona., Radiocarbon 34(3) 664–676.

    CAS  Google Scholar 

  • Rubinson M. and Clayton R.N. (1969) Carbon-13 fractionation between aragonite and calcite. Geochim Cosmochim. Acta 33, 997–1022.

    Article  CAS  Google Scholar 

  • Saliege J.F. and Fontes J.-C. (1984) Essai de determination experimentale du fractionnement des isotopes 13C et 14C du carbone au cours de processus naturels. Int. J. Appl. Radiat. hot. 35, 55–62.

    Article  CAS  Google Scholar 

  • Salem O., Visser J.H., Dray M. and Gonfiantini R. (1980) Environmental isotopes used in a hydrogeological study of north-eastern Brazil. In Arid-Zone Hydrology: Investigations with Isotope Techniques, pp165–179. IAEA, Vienna.

    Google Scholar 

  • Schlosser P., Stute M., Dorr H., Sonntag C. and Munnich K.O. (1988) Tritium/3He dating of shallow groundwater. Earth Planet. Sci. Lett. 89, 353–362.

    Article  CAS  Google Scholar 

  • Scharpenseel H.W. and Becker-Heidmann P. (1992) Twenty-five years of radiocarbon dating soils: paradigm of erring and learning. Radiocarbon 34(3), 541–549.

    CAS  Google Scholar 

  • Siegenthaler U. (1972) Bestimmung der Verweildauer von Grundwasser im Boden mit radioactiven Umweltisotopen. Gas-Wasser-Abwasser 52, 283–290.

    Google Scholar 

  • Smethie W.M., Solomon D.K., Schiff S.L. and Mathieu G.G. (1992) Tracing groundwater flow in the Borden aquifer using Krypton-85. J. Hydrol. 130, 279–297.

    Article  Google Scholar 

  • Stuiver M. and Polach H.A. (1977) Discussion: reporting of carbon-14 data. Radiocarbon 19, 355–363.

    Google Scholar 

  • Stuiver M., Reimer P.J., Bard E., Beck J.W., Burr G., Hughen K.A., Kromer B., McCormac F.G., van der Plicht J. and Spurk M. (1998) INTCAL98 Radiocarbon Age Calibration, 24, 000-0 cal BP. Radiocarbon 40(3), 1041.

    CAS  Google Scholar 

  • Suchomel K.H., Kreamer D.K. and Long A. (1990) Production and transport of carbon dioxide in a contaminated vadose zone: a stable and radioactive carbon isotope study. Environ. Sci. Technol. 24, 1824–1831

    Article  CAS  Google Scholar 

  • Tamers M.A. (1967) Radiocarbon ages of groundwater in an arid zone unconfined aquifer. In Isotope Techniques in the Hydrological Cycle, AGU Monograph 11, pp. 143-152.

    Google Scholar 

  • Thurman E.M. (1985a) Organic Geochemistry of Natural Water. Martinus Nijhof / Dr W. Junk, New York, 497 pp.

    Book  Google Scholar 

  • Thurman E.M. (1985b) Humic substance in groundwater. In Humid Substances in Soil, Sediment, and Water, ed. G.R. Aitken, P. McCarthy, D. McKnight and R. Wershaw, pp.87–103. Wiley and Sons, New York.

    Google Scholar 

  • Wallick E.I. (1976) Isotopic and chemical considerations in radiocarbon dating of groundwater within the semi-arid Tucson Basin, Arizona. In Interpretation of Environmental Isotope and Hydrochemical Data in Groundwater Hydrology, pp. 195–212. IAEA, Vienna.

    Google Scholar 

  • Wassenaar L., Aravena R. and Fritz P. (1989) The geochemistry and evolution of natural organic solutes in groundwater. Radiocarbon 31(3), 865–876.

    Google Scholar 

  • Wassenaar L., Aravena R., Hendry J. and Fritz P. (1991) Radiocarbon in dissolved organic carbon, a possible groundwater dating method: case studies from western Canada. Water Resour. Res. 27(8), 1975–1986.

    Article  CAS  Google Scholar 

  • Wigley T.M.L., Plummer L.N. and Pearson F.J. (1978) Mass transfer and carbon isotope evolution in natural water systems. Geochim. Cosmochim. Acta 42, 1117–1139.

    Article  CAS  Google Scholar 

  • Winograd I.J. and Pearson Jr. F.J. (1976) Major carbon 14 anomaly in a regional carbonate aquifer: possible evidence for megascale channeling, south central Great Basin. Water Resour. Res. 12, 1125–1143.

    Article  Google Scholar 

  • Vogel J.C. and Ehhart D (1963) The use of carbon isotopes in groundwater studies. Radioisotopes in Hydrology, pp 385–395. IAEA Vienna.

    Google Scholar 

  • Vogel J.C, Grootes P.M. and Mook W.G. (1970) Isotope fractionation between gaseous and dissolved carbon dioxide. Zeitschrift fur Physik 230, 225–238.

    Article  CAS  Google Scholar 

  • Yurtsever Y. and Payne B.R. (1985) Time-variant linear compartmental model approach to study flow dynamics of a karstic groundwater system by the aid of environmental tritium. Symposium on Karst Water Resources, IAHS Publ. No 161, pp.545-561.

    Google Scholar 

  • Zuber A. (1986) On the interpretation of tracer data in variable flow systems. J. Hydrol. 86, 45–57.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kalin, R.M. (2000). Radiocarbon Dating of Groundwater Systems. In: Cook, P.G., Herczeg, A.L. (eds) Environmental Tracers in Subsurface Hydrology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4557-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4557-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7057-4

  • Online ISBN: 978-1-4615-4557-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics