Skip to main content

Selecting the Optimal Deadlock Resolution Strategy in Buffer Space Allocation of Flexibly Automated Production Systems: An Analytical Perspective

  • Chapter
Discrete Event Systems

Part of the book series: The Springer International Series in Engineering and Computer Science ((SECS,volume 569))

Abstract

Motivated by the emerging need to reconsider the problem of selecting the optimal deadlock resolution strategy for buffer space allocation in some contemporary production environments — e.g., semiconductor manufacturing cluster tools — this work extends past results on deadlock resolution in sequential resource allocation systems in a number of different ways.First, it extends the formal framework modeling the resource allocation taking place in these environments, by introducing a probabilistic structure on the considered job routing schemes, and bringing, thus, the whole analysis in the context of kprobabilistic automata [17, 14]. In this new modeling paradigm, it introduces the concept of randomized deadlock avoidance policies (R-DAP’s), which establishes a continuum between the two extreme options of deadlock prevention avoidance and detection & recovery, traditionally recognized as the possible deadlock resolution strategies.Finally, it outlines an analytical framework for selecting optimally the deadlock resolution strategy that maximizes the system production throughput. The defining logic and the effectiveness of this framework are demonstrated by applying it on a prototype case study, while the obtained results admit an interesting intuitive interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banaszak, Z. A. and Krogh, B. H. (1990), “Deadlock Avoidance in Flexible Manufacturing Systems with Concurrently Competing Process Flows”, IEEE Trans. on Robotics & Automation, 6:724–734.

    Article  Google Scholar 

  2. Bodner, D. A. and Reveliotis, S. A. (1999), “Flexible Semiconductor Manufacturing”, in Encyclopedia of Electrical and Electronics Engineering, Webster, J. G. (ed.), John Wiley & Sons, 7:596–607.

    Google Scholar 

  3. Chvátal, V. (1983), Linear Programming, NY: W. H. Freeman & Co.

    MATH  Google Scholar 

  4. Coffman, E. G., Elphick, M. J. and Shoshani, A. (1971), “System Deadlocks”, Computing Surveys, 3:67–78.

    Article  MATH  Google Scholar 

  5. Ezpeleta, J., Colom, J. M. and Martinez, J. (1995), “A Petri Net based deadlock prevention policy for Flexible Manufacturing Systems”, IEEE Trans. on Robotics & Automation, 11:173–184.

    Article  Google Scholar 

  6. Fanti, M. P., Maione, B., Mascolo, S. and Turchiano, B. (1997), “Event-Based Feedback Control for Deadlock Avoidance in Flexible Production Systems”, IEEE Trans. on Robotics and Automation, 13:347–363.

    Article  Google Scholar 

  7. Garg, V., Kumar, R. and Marcus, S. (1999), “A Probabilistic Language Formalism for Stochastic Discrete-Event Systems”, IEEE Trans on Automatic Control, 44:280–293.

    Article  MathSciNet  MATH  Google Scholar 

  8. Kumar, P. R. (1994), “Scheduling Semiconductor Manufacturing Plants”, IEEE Control Systems Magazine, 14(6):33–40.

    Article  Google Scholar 

  9. Kumaran, T., Chang, W., Cho, H. and Wysk, R. (1994), “A structured approach to deadlock detection, avoidance and resolution in flexible manufacturing systems”, Intl. Jrnl of Production Research, 32:2361–2379.

    Article  Google Scholar 

  10. Lawley, M., Reveliotis, S. and Ferreira, P. (1998), “A correct and scalable deadlock avoidance policy for flexible manufacturing systems”, IEEE Trans. on Robotics & Automation, 14:796–809.

    Article  Google Scholar 

  11. Leung, Y. T. and Sheen, G. J. (1994), “Resolving Deadlocks in Flexible Manufacturing Cells”, Journal of Manufacturing Systems, 12:291–304.

    Article  Google Scholar 

  12. Li, Y., Lin, F. and Lin, Z-H. (1999), “Supervisory Control of Probabilistic Discrete-Event Systems with Recovery”, IEEE Trans. on Automatic Control, 44:1971–1975.

    Article  MathSciNet  MATH  Google Scholar 

  13. Medhi, J. (1991), Stochastic Models in Queueing Theory, San Diego: Academic Press.

    MATH  Google Scholar 

  14. Paz, A. (1971), Introduction to Probabilistic Automata, New York: Academic.

    MATH  Google Scholar 

  15. Perros, H. G. (1994), Queueing Networks with Blocking: Exact and Approximate Solutions, NY: Oxford University Press.

    Google Scholar 

  16. Peterson, J. L. (1981), Operating System Concepts, Addison-Wesley.

    Google Scholar 

  17. Rabin, M. O. (1963), “Probabilistic Automata”, Inform. Contr., 6:230–245.

    Article  Google Scholar 

  18. Reveliotis, S. A. (2000), “An Analytical Investigation of the Deadlock Avoidance vs. Detection & Recovery Problem in Buffer-space Allocation of Flexibly Automated Production Systems”, Tech. Report: School of Industrial & Systems Eng., Georgia Tech.

    Google Scholar 

  19. Reveliotis, S. A., Lawley, M. A. and Ferreira, P. M. (1997), “Polynomial Complexity Deadlock Avoidance Policies for Sequential Resource Allocation Systems”, IEEE Trans. on Automatic Control, 42:1344–1357.

    Article  MathSciNet  MATH  Google Scholar 

  20. Reveliotis, S. A. and Ferreira, P. M. (1996), “Deadlock Avoidance Policies for Automated Manufacturing Cells”, IEEE Trans. on Robotics & Automation, 12:845–857.

    Article  Google Scholar 

  21. Singer, P. (1995), “The Driving Forces in Cluster Tool Development”, Semiconductor International, July 1995:113–118.

    Google Scholar 

  22. Wysk, R. A., Yang, N. S. and Joshi, S. (1994), “Resolution of Deadlocks in Flexible Manufacturing Systems: Avoidance and Recovery Approaches”, Journal of Manufacturing Systems, 13:128–138.

    Article  Google Scholar 

  23. Xing, K. Y., Hu, B. S. and Chen, H. X. (1996), “Deadlock Avoidance Policy for Petri Net Modeling of Flexible Manufacturing Systems with Shared Resources”, IEEE Trans. on Automatic Control, 41:289–295.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reveliotis, S.A. (2000). Selecting the Optimal Deadlock Resolution Strategy in Buffer Space Allocation of Flexibly Automated Production Systems: An Analytical Perspective. In: Boel, R., Stremersch, G. (eds) Discrete Event Systems. The Springer International Series in Engineering and Computer Science, vol 569. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4493-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4493-7_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7025-3

  • Online ISBN: 978-1-4615-4493-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics