Skip to main content

Canadian application of microbiotests to assess the toxic potential of complex liquid and solid media

  • Chapter
New Microbiotests for Routine Toxicity Screening and Biomonitoring

Abstract

Microbiotesting activities comprise one important approach to address the issue of chemical contamination and its potential impacts on water quality and biota of receiving aquatic ecosystems. Under the second Saint-Lawrence River Action Plan (1993-1998), the Centre Saint-Laurent (Environment Canada, Québec Region, Montréal) continued its development and application of microbioanalytical tools and techniques to assess, control and prevent point source pollution of industrial origin to the freshwater portion of the Saint-Lawrence River ecosystem. In this review, some of the major studies conducted in the area of microbiotesting are highlighted These include 1) adapting the Microtox® acute toxicity assay in a 96-well microplate format to markedly increase its sample throughput capabilities, 2) employing the SOS Chromotest™ to determine the genotoxic status of major industrial effluents discharging to the Saint-Lawrence River and their potential impact on downstream biota, 3) developing an alternative to whole fish acute (sub)lethal toxicity testing with the help of rainbow trout primary hepatocytes, 4) developing a simple microplate-based Hydra toxicity assay as an effective screen for chemicals and various environmental media, 5) developing a novel algal solid phase assay to predict the toxic potential of freshwater sediments, and 6) conducting a major investigation to develop a cost-effective multitrophic bioanalytical battery to assess the (geno)toxicity of freshwater sediments. The aforementioned studies are but a few examples of the diverse and bustling research endeavours presently ongoing internationally in microbiotesting and many important challenges still lie ahead for this field well into the third millennium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baksi S.M. and Frazier J.M. 1990. Isolated fish hepatocytes — Model systems for toxicology research. Aquat.Toxicol. 16:229–259.

    Article  CAS  Google Scholar 

  • Bermingham N., Costan G., Blaise C. and Patenaude L. 1996. Use of micro-scale aquatic toxicity tests in ecolabelling guidelines for general purpose cleaners. In Richardson M, ed, Environmental xenobiotics. Taylor & Francis, London, pp 195–212.

    Google Scholar 

  • Bitton G., Garland E., Kong I.C., Morel J.L. and Koopman B. 1996. A direct solid phase assay for heavy metal toxicity. I. Methodology. J. Soil Contamin. 5:385–394.

    Article  CAS  Google Scholar 

  • Blaise C.R., Ska B., Sabatini G., Bermingham N. and Legault R. 1981. Potentiel de bioaccumulation de substances toxiques d’eaux résiduaires industrielles à l’aide d’un essai utilisant des algues et des bactéries. Inst. Nat. Santé Rech Méd. 106:155–165.

    Google Scholar 

  • Blaise G, van Coillie R., Bermingham N. and Coulombe G. 1987. Comparaison des réponses toxiques de trois indicateurs biologiques (bactéries, algues, poissons) exposés à des effluents de fabriques de pátes et papiers. Rev Intern.Sci.Eau 3.9–17.

    CAS  Google Scholar 

  • Blaise C., Sergy G., Wells P., Bermigham N. and van Coillie R. 1988. Biological testing—development, application and trends in Canadian environmental protection laboratories. Toxic Assess. 3:385–406.

    Article  Google Scholar 

  • Blaise C. and Harwood M. 1991. Contribution à l’évaluation écotoxicologique du Tébuthiuron—un herbicide de la classe des urées substituées. Rev.Sci.Eau 4:121–134.

    CAS  Google Scholar 

  • Blaise G, Forghani R., Legault R., Guzzo J. and Dubow M. 1994. A bacterial toxicity assay performed with microplates, microluminometry and Microtox® reagent. Biotechniques 16:932–937.

    Google Scholar 

  • Blaise C. and Kusui T. 1997. Acute toxicity assessment of industrial effluents with a microplate-based Hydra attenuata assay. Environ.Toxicol.Water Qual. 12:53–60.

    CAS  Google Scholar 

  • Blaise C. and Ménard L. 1998. A micro-algal solid phase test to assess the toxic potential of freshwater sediments. Water Qual.Res.J.Canada 33:133–151.

    CAS  Google Scholar 

  • Bombardier M. and Bermingham N. 1999. The Sed-Tox Index: a toxicity-directed management tool to assess and rank sediments based on their hazard—Concept and application. Environ.Toxicol.Chem. 18(4), in press.

    Google Scholar 

  • Brouwer H., Murphy T. and McArdle L. 1990. A sediment contact assay with Photobacterium phosphoreum. Environ.Toxicol.Chem. 9:1353–1358.

    Article  CAS  Google Scholar 

  • Bulich A.A. 1979. Use of luminescent bacteria for determining toxicity in aquatic environments. In Markings L.L. and Kimerle R.A., eds, Aquatic Toxicology. ASTM 667, American Society for Testing and Materials, pp 98–106.

    Google Scholar 

  • Butler G.C. 1978. Principles of Ecotoxicology. SCOPE volume number 12, Wiley, Chichester, United Kingdom.

    Google Scholar 

  • Chapman P.M. 1986. Sediment quality criteria from the sediment quality triad: an example. Environ. Toxicol. Chem. 5:957–964.

    Article  CAS  Google Scholar 

  • Corbisier P., Thiry E. and Diels L. 1996. Bacterial biosensors for the toxicity assessment of solid wastes. Environ. Toxicol. Water Qual. 11:171–177.

    Article  CAS  Google Scholar 

  • Costan G., Bermingham N., Blaise C. and Férard J.F. 1993. Potential ecotoxic effects probe (PEEP): A novel index to assess and compare the toxic potential of industrial effluents. Environ. Toxicol. Water Qual. 8:115–140.

    Article  CAS  Google Scholar 

  • Côté G, Blaise C., Michaud J.-R., Ménard L., Trottier S., Gagné F., Riebel P. and Lifschitz R 1998a. Comparisons between micro-scale and whole sediment assays for freshwater sediment toxicity assessment. Environ.Toxicol. Water Qual. 13:93–110.

    Article  Google Scholar 

  • Côté G, Blaise G, Schroeder J., Douville M. and Michaud J.-R 1998b. Investigating the adequacy of selected micro-scale bioassays to predict the toxic potential of freshwater sediments through a tier process. Water Qual.Res.J.Canada 33:253–277.

    Google Scholar 

  • Couture P., Blaise G, Cluis D. and Bastien C. 1989. Zirconium toxicity assessment using bacteria, algae and fish assays. Water Air Soil Poll. 47:87–100.

    Article  CAS  Google Scholar 

  • Day K.E., Dutka B.J., Kwan K.K., Batista N., Reynoldson T.B. and Metcalfe-Smith J.L. 1995. Correlations between solid-phase microbial screening assays, whole sediment toxicity tests with macroinvertebrates and in situ benthic community structure. J.Great Lakes Res. 21:192–206.

    Article  CAS  Google Scholar 

  • Dutka B. 1988. Priority setting of hazards in waters and sediments by proposed ranking scheme and battery of tests approach, German JAppl.Zool. 75:303–316.

    CAS  Google Scholar 

  • Fu L.J., Staples R.E. and Stahl R.G. Jr. 1994. Assessing acute toxicities of pre-and post-treatment industrial wastewaters with Hydra attenuata: a comparative study of acute toxicity with the fathead minnow Pimephales promelas. Environ.Toxicol.Chem. 13:563–569.

    CAS  Google Scholar 

  • Gagné F. and Blaise C. 1995. Evaluation of genotoxicity of environmental contaminants in sediments to rainbow trout hepatocytes. Environ. Toxicol Water Qual. 10:217–229.

    Article  Google Scholar 

  • Gagné F., Trottier S., Blaise C., Sproull J. and Ernst B. 1995. Genotoxicity of sediment extracts obtained in the vicinity of a creosote-treated warf to rainbow trout hepatocytes. Toxicol.Lett. 78:175–182.

    Article  Google Scholar 

  • Gagné F. and Blaise C. 1996. Flow cytometry measurement of mixed function oxidase (MFO) activity and cell viability in rainbow trout (Oncorhynchus mykiss) hepatocytes: method development Environ.Toxicol.Water Qual 11:53–63.

    Article  Google Scholar 

  • Gagné F. and Blaise C. 1996. Lethal and sublethal effects of sediment extracts to rainbow trout hepatocytes. Toxicol.Lett. 87:85–92.

    Article  Google Scholar 

  • Gagné F. and Blaise C. 1997. Validation of the rainbow trout hepatocyte model for ecotoxicity testing of industrial wastewater. Environ.Toxicol.Water Qual. 12:305–314.

    Article  Google Scholar 

  • Gagné F. and Blaise C. 1998. Estrogenic properties of municipal and industrial wastewaters evaluated with a rapid and sensitive chemoluminescent in situ hybridization assay (CISH) in rainbow trout hepatocytes. Aquat.Toxicol. 44:83–91.

    Article  Google Scholar 

  • Johnson E.M. and Gabel B.E.G. 1982. Application of the Hydra assay for rapid detection of environmental hazards. J.Am.Coll.Toxicol. 1:57–71.

    Article  CAS  Google Scholar 

  • Jouany J.M. 1971. Ecologie et nuisances. Actual Pharmaceut. 69:12–22.

    Google Scholar 

  • Kwan K.K. and Dutka B.J. 1992. Evaluation of Toxi-Chromotest direct sediment toxicity testing procedure and Microtox® solid-phase testing procedure. Bull.Environ.Contam.Toxicol. 49:656–662.

    Article  CAS  Google Scholar 

  • Kusui T. and Blaise C. 1998. Ecotoxicological assessment of Japanese industrial effluents using a battery of small-scale toxicity tests. In Salem R, ed., Impact assessment of hazardous aquatic contaminants: concepts and approaches, Ann Arbor Press, Michigan, USA, pp 161–181.

    Google Scholar 

  • Microbics Corporation, 1992. Microtox Manual, Vol. 1-5. Microbics, Carlsbad, CA 2008–8883, USA.

    Google Scholar 

  • Quillardet P., Huisman O., D’ari R and Hofnung M. 1982. SOS Chromotest, a direct assay of induction of an SOS function in Escherichia coli K12 to measure genotoxicity. Proc.NatAcad. Sci. USA 79:5971–5975.

    Article  CAS  Google Scholar 

  • Quillardet P. and Horfnung M. 1985. The SOS Chromotest, a colorimetric bacterial assay for genotoxins: Procedures. MutatRes. 147:65–78.

    CAS  Google Scholar 

  • Qureshi A.A., Bulich A.A. and Isenberg D.L. 1998. Microtox toxicity test systems—where they stand today. In Wells P., Lee K., Blaise C., eds, Microscale Testing in Aquatic Toxicology: Advances, Techniques and Practice. CRC Lewis Publishers, Boca Raton, Florida, USA, pp 185–199.

    Google Scholar 

  • Ramade F. 1979. Ecotoxicologie. Collection d’écologie, No. 9, Masson, Paris, France.

    Google Scholar 

  • Thomas J.M., Skalski J.R, Cline J.F., McShane M.C., Simpson J.C., Miller W.E., Peterson S.A., Callahan CA. and Greene J.C. 1986. Chemical characterization of chemical wastesite contamination and determination of its extent using bioassays. Environ. Toxicol. Chem. 5:487–501.

    Article  CAS  Google Scholar 

  • Trottier S., Blaise C., Kusui T. and Johnson E.M. 1997. Acute toxicity assessment of aqueous samples using a microplate-based Hydra attenuata assay: technical methodology. Environ.Toxicol. Water Qual. 12:265–271.

    Article  CAS  Google Scholar 

  • Walker G.C. 1984. Mutagenesis and inducible responses to deoxyribonucleic acid damage in E. coli. Microbiol.Rev. 48:60–93.

    CAS  Google Scholar 

  • Wells P., Lee K. and Blaise C. 1998. Microscale Testing in Aquatic Toxicology: Advances, Techniques and Practice. CRC Lewis Publishers, Boca Raton, Florida, USA.

    Google Scholar 

  • White P., Rasmussen J. and Blaise C. 1996. Comparing the presence, potency and potential hazard of organic compounds extracted from a broad range of industrial effluents. Environ.Mol.Mutagen. 27:116–139.

    Article  CAS  Google Scholar 

  • White P., Rasmussen J. and Blaise C. 1998. Genotoxic substances in the Saint-Lawrence system II: Extracts of fish and macro-invertebrates from the Saint-Lawrence and Saguenay Rivers (Canada). Environ.Toxicol.Chem. 17:304–316.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Blaise, C. (2000). Canadian application of microbiotests to assess the toxic potential of complex liquid and solid media. In: Persoone, G., Janssen, C., De Coen, W. (eds) New Microbiotests for Routine Toxicity Screening and Biomonitoring. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4289-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4289-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6924-0

  • Online ISBN: 978-1-4615-4289-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics