Skip to main content

Neutral Atom Traps for Bose-Einstein Condensation

  • Chapter
Trends in Atomic and Molecular Physics

Abstract

Optical and magnetic trapping of neutral atoms, to produce ultracold and dense samples of atomic vapours, is a new phenomenon in physics that has potential for use in many areas of research. Observation of Bose-Einstein condensation (BEC) in dilute vapours of alkali atoms [1–4] is one of the fascinating applications of these atomic trapping and cooling techniques. For BEC, one must produce a sample of bosonic particles whose thermal de Broglie wavelength exceeds the mean inter-atomic separation. Under this situation the Bose statistics favours the condensation of all the atoms into a single quantum state of the system [5]. Clearly such a phase transition can be observed only at ultra low temperatures and relatively high densities of bosonic particles. Fuelled by the search for high densities and very low temperatures of atomic vapours, last few years have seen a flurry of activities in demonstrating a variety of neutral atom traps [6, 7]. These have made it possible to obtain dense samples of atomic systems at unprecedented low temperatures for the observation of the collective quantum effects. Other applications of these neutral atom traps include very high resolution spectroscopy, metrology, nonlinear optics, atom optics and “non-accelerator” particle physics [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Science 269, 198 (1995).

    Article  ADS  Google Scholar 

  2. K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Drutent, D. S. Durfee, D. M. Kurn and W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995).

    Article  ADS  Google Scholar 

  3. C. C. Bradly, C. A. Sackett, J. J. Tollet and R. G. Hulet, Phys. Rev. Lett. 75, 1687 (1995).

    Article  ADS  Google Scholar 

  4. A. S. Parkins and D. F. Walls, Phys. Rep. 303, 1 (1998).

    Article  ADS  Google Scholar 

  5. K. Huang, Statistical Mechanics, Wiley, New York (1987).

    Google Scholar 

  6. T. Bergeman, G. Erez and H. J. Metcalf, Phys. Rev. A35, 1535 (1987).

    Article  ADS  Google Scholar 

  7. H. Metcalf and P. van der Straten, Phys. Rep. 244, 203 (1994).

    Article  ADS  Google Scholar 

  8. M. Kasevich, K. Moler, E. Riis, E. Sundermann, D. Weiss and S. Chu, At. Phys. 12, 47 (1991); D. N. Stacy, At. Phys. 13, 46 (1993).

    Google Scholar 

  9. E. L. Raab, M. Prentiss, A. Cable, S. Chu and D. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).

    Article  ADS  Google Scholar 

  10. H. Metcalf, J. Opt. Soc. Am. B6, 2206 (1989).

    Article  Google Scholar 

  11. D. Sesko, T. Walker, C. Monroe, A. Gallaghar and C. Wieman, Phys. Rev. Lett. 63, 961 (1989).

    Article  ADS  Google Scholar 

  12. C. Monroe, W. Swann, H. Robinson and C. Wiemann, Phys. Rev. Lett. 65, 1571 (1990).

    Article  ADS  Google Scholar 

  13. D. Sesko, T. Walker and C. Wieman, J. Opt. Soc. Am. B8, 946 (1991).

    Article  ADS  Google Scholar 

  14. A. M. Stean, M. Chowdhury and C. Foot, J. Opt. Soc. Am. B9, 2142 (1992).

    Article  ADS  Google Scholar 

  15. K. E. Gibble, S. Kasapi and S. Chu, Opt. Lett. 17, 526 (1992).

    Article  ADS  Google Scholar 

  16. K. Lindquist, M. Stephens and C. Wieman, Phys. Rev. A46, 4082 (1992).

    Article  ADS  Google Scholar 

  17. W. Kitterle, K. B. Davis, M. A. Joeffe, A. Martin and D. Pritchard, Phys. Rev. Lett. 70, 2253 (1993).

    Article  ADS  Google Scholar 

  18. (a) A. P. Marathe, K. G. Manohar, B. N. Jagatap, S. G. Nakhate, S. A. Ahmad and R. C. Sethi, Design and Development of Spherical Quadrupole Magnetostatic Trapping Fields, Proc. Of DAE Nuclear Physics Symposium, 41B, 394 (1998). (b) B. N. Jagatap, K. G. Manohar, S. G. Nakhate, A. P. Marathe and S. A. Ahmad, Curr. Sci. 76, 207 (1999).

    Google Scholar 

  19. M. O. Mewes, M. R. Andrews, N. J. van Druten, O. M. Kurn, D. S. Durfee and W. Ketterle, Phys. Rev. Lett. 77, 416 (1996).

    Article  ADS  Google Scholar 

  20. D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman and E. A. Cornell, Phys. Rev. Lett. 81, 1539 (1998).

    Article  ADS  Google Scholar 

  21. D. M. Stampr-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inonye, H. J. Miesner, J. Steinger and W. Ketterle, Phys. Rev. Lett. 80, 2027 (1998).

    Article  ADS  Google Scholar 

  22. B. N. Jagatap, S. A. Ahmad, U. K. Chatterjee and A. P. Roy, in Seminar on “Physics with Cooled and Trapped Atoms and Ions”, BARC, March 5–6, 1998.

    Google Scholar 

  23. J. D. Weinstein, R. de Carvalho, J. Kim, D. Patterson, B. Friedrich and J. M. Doyle, Phys. Rev. A57, R3171 (1998).

    ADS  Google Scholar 

  24. Y. V. Gott, M. S. Ioffe and V. B. Tel’kovskii, Nucl. Fusion, 1962, Suppl. Pt. 3, 1045 (1962).

    Google Scholar 

  25. D. E. Pritchard, Phys. Rev. Lett. 51, 1336 (1983).

    Article  ADS  Google Scholar 

  26. See for example, O. Morice, Y. Castin and J. Dalibard, Phys. Rev. A51, 3896 (1995); B. V. Svistunov and G. V. Shlyapnikov, Sov. Phys. JETP 71, 71 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jagatap, B.N., Marathe, A.P., Manohar, K.G., Sethi, R.C., Ahmad, S.A. (2000). Neutral Atom Traps for Bose-Einstein Condensation. In: Sud, K.K., Upadhyaya, U.N. (eds) Trends in Atomic and Molecular Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4259-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4259-9_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6912-7

  • Online ISBN: 978-1-4615-4259-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics