Skip to main content

Variability of Extreme Cretaceous-Paleogene Climates

Evidence from Blake Nose (ODP Leg 171B)

  • Chapter
Reconstructing Ocean History

Abstract

The importance of drilling Cretaceous and Paleogene marine deposits is discussed for understanding climate variability during extreme warm climates. We present evidence from ODP Leg 171 drilling at Blake Nose for climate variability during the Late Paleocene Thermal Maximum (LPTM) and late Albian-early Cenomanian time periods. Borehole logs and continuous core measurements, such as magnetic susceptibility and color variations, reveal that most of the sediment variability is forced by the Earth’s orbital variations. Sediment variability before the LPTM is dominated by the precessional cycle, which possibly transgressed into the obliquity cycle prior to the carbon anomaly, or alternatively sedimentation rates increased. The climate was changing before the LPTM, which suggests that some unknown climatic threshold was surpassed, ultimately paving the way to the climatic conditions of the LPTM. The downhole gamma ray log shows a large excursion coinciding with the carbon isotope anomaly. The gamma ray excursion at the LPTM is not unique and may be part of a longer climate cycle of about 2m. y. The sedimentary record of the late Albian-early Cenomanian period is characterized by cycles of black shales alternating with limestones (time equivalent of Oceanic Anoxic Event 1d). The resistivity log reveals the nature of cyclicity variations during this time period. We assume that precessional cycling is evident in the lower part of the record. Bundling of the high frequency cycles into an unknown low frequency cycle (100k. y.?) occurred in the upper part of the sequence. We conclude that climate during warm periods was not stable and longer term orbital cycles in the order of two million years may have triggered the most extreme intervals such as the LPTM and the termination period of OAE 1d, although they could also reflect long term sedimentary cycles unrelated to orbital dynamics. The abrupt termination of OAE 1d suggests intensification of intermediate/deep water ventilation in the Cenomanian, possibly generated by the opening of an unknown gateway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arthur, M.A., Schlanger, S.O., and Jenkyns, H.C., The Cenomanian-Turonian Oceanic Anoxic Event II, paleoceanographic controls on organic matter production and preservation, in Marine Petroleum Source Rocks, edited by Brooks, J., and Fleet, A., Special Publication 24. Geological Society of London, 399–418, 1987.

    Google Scholar 

  • Arthur, M.A., Brumsack H.J., Jenkyns, H.C., and Schlanger, S.O., 1990, Stratigraphy, geochemistry, and paleoceanography of organic carbon-rich Cretaceous sequences, in Cretaceous Resources, Events, and Rhythms, edited by Ginsburg, R.N., and Beaudoin, B., Kluwer Acad. Publ., 75–119, 1990.

    Google Scholar 

  • Aubry, M.P., Early Paleogene calcareous nannoplankton evolution: a tale of climatic amelioration, in Late Paleocene-Early Eocene climatic and biotic events., edited by Aubry, M.P., Lucas, S., and Berggren, W.A., Columbia University Press, New York, 1998.

    Google Scholar 

  • Berger, A., Loutre, M.F., and Laskar, J., Stability of the astronomical frequencies over the Earth’s history for paleoclimate studies, Science 255, 560–566, 1992.

    Article  Google Scholar 

  • Berggren, W.A., Kent, D.V., Swisher, C.C., and Aubry, P.M., A revised Cenozoic geochronology and chronostratigraphy, in Geochronology, Time Scales and Global Stratigraphic Correlations, edited by Berggren, W.A., Kent, D.V., Aubry, M.P., and J. Hardenbol, 129–212, 1995.

    Google Scholar 

  • Boulter, M.C., Gee, D., and Fisher, H.C., Angiosperm radiation at the Cenomanian/Turonian and Cretaceous/Tertiary boundaries, Cretaceous Research, 19, 107–112, 1998.

    Article  Google Scholar 

  • Bralower, T.J., Arthur, M.A., Leckie, R.M., Sliter, W.V., Allard, D., and Schlanger, S.O., Timing and paleoceanography of oceanic dysoxia/anoxia in the late Barremian to early Aptian, Palaios, 9, 335–369, 1994.

    Article  Google Scholar 

  • Bralower, T.J., Thomas, D.J., Zachos, J.C., Hirschmann, M.M., Röhl, U., Sigurdsson, H., Thomas, E., and Whitney, D.L., High-resolution records of the late Paleocene thermal maximum and circum-Caribbean volcanism: Is there a causal link? Geology, 25, 963–966, 1997a.

    Article  Google Scholar 

  • Bralower, T.J., Fullagar, P.D., Pauli, C.K., Dwyer, G.S., and Leckie, R.M., Mid Cretaceous strontium isotope stratigraphy of deep sea sections. Geological Society of America Bulletin, 109, 142–144, 1997b.

    Article  Google Scholar 

  • Cande, S.C., and Kent, D.V., A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic: Journal of Geophysical Research, 97, 13, 917–951, 1992.

    Google Scholar 

  • Cande, S.C., and Kent, D.V., Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic, Journal of Geophysical Research, 100, 6093–6095, 1995.

    Article  Google Scholar 

  • Caron, M., and Homewood, P., Evolution of early planktonic foraminifera. Marine Micropaleontology, 7, 453–462, 1983.

    Article  Google Scholar 

  • Coccioni, R., Erba, E., and Premoli Silva, I., Barremian-Aptian calcareous plankton biostratigraphy from the Gorgo Cerbara section (Marche, central Italy) and implications for plankton evolution. Cretaceous Research, 13, 517–537, 1992.

    Article  Google Scholar 

  • Coccioni, R., Galeotti, S., and Gravili, M., Latest Albian-earliest Turanian deep-water agglutinated foraminifera in the Bottacione section (Gubio, Italy)—biostratigraphic and palaeoecologic implications. Revista Espanola de Paleontologia, v. no. homenaje al Dr. Guillermo Colom, 135–152, 1995.

    Google Scholar 

  • de Boer, P.L., Cyclicity and storage of organic matter in middle Cretaceous pelagic sediments, in Cyclic and event stratification, edited by Einsele, G., and Seilacher, A., Springer-Verlag, 465–475, 1982.

    Google Scholar 

  • de Graciansky, P.C., Deroo, G., Herbin, J.P., Montadert, L., Müller, G., Schaaf, A., and Sigal, J., A stagnation event of ocean-wide extent in the Upper Cretaceous. Nature, 308, 346–349, 1984.

    Article  Google Scholar 

  • Dickens, G.R., and Owen, R.M., Rare earth element deposition in pelagic sediment at the Cenomanian-Turonian boundary, Exmouth Plateau. Geophysical Research Letters, 22, 203–206, 1995.

    Article  Google Scholar 

  • Dickens, G.R., Castillo, M.M., and Walker, J.C.G., A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of methane hydrate. Geology, 25, 259–262, 1997.

    Article  Google Scholar 

  • Dickens, G.R., O’Neil, J.R., Rea, D.K., and Owen, R.M., Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, 10, 965–971, 1995.

    Article  Google Scholar 

  • D’Hondt, S., Herbert, T.D., King, J., and Gibson, C., Planktic foraminifera, asteroids, and marine production: Death and recovery at the Cretaceous-Tertiary boundary, in The Cretaceous-Tertiary Event and Other Catastrophes in Earth History, edited by Ryder, G., Fastovsky, D., and Gartner, S., Geological Society of America Special Paper 307, 303–317, 1996.

    Google Scholar 

  • Erba, E., Nannofossils and superplumes: the early Aptian “nannoconid crisis”. Paleoceanography, 9, 483–501, 1994.

    Article  Google Scholar 

  • Erba, E., The Aptian stage: Bulletin de l’Institut Royal Des Sciences Naturelles De Belgique, 66—Supplement, 31–44, 1996.

    Google Scholar 

  • Erbacher, J., Thurow, J., and Littke, R., Evolution patterns of radiolaria and organic matter variations: a new approach to identify sealevel changes in mid-Cretaceous pelagic environments, Geology, 24, 499–502, 1996.

    Article  Google Scholar 

  • Erbacher, J., and Thurow, J., Influence of oceanic anoxic events on the evolution of mid-Cretaceous radiolaria in the North Atlantic and western Tethys. Marine Micropaleontology, 30, 139–158, 1997.

    Article  Google Scholar 

  • Follmi, K.B., Weissert, H., Bisping, M., and Funk, H., Phosphogenesis, carbon-isotope stratigraphy, and carbonate platform evolution along the Lower Cretaceous northern Tethyan margin. American Association of Petroleum Geologists, Bulletin, 106, 729–746, 1994.

    Google Scholar 

  • Fricke, H.C., Clyde, W.C., O’Neil, J.R., and Gingerich, P.D., Evidence for rapid climate change in North America during the Latest Paleocene thermal maximum: Oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming). Earth and Planetary Science Letters, 160, 193–208, 1998.

    Article  Google Scholar 

  • Gale, A.S., A Milankovitch scale for Cenomanian time, Terra Nova, 1, 420–425, 1989.

    Article  Google Scholar 

  • Gröcke, D.R., Hesselbo, S.P., and Jenkyns, H.C., Carbon-isotope composition of Lower Cretaceous fossil wood: ocean-atmosphere chemistry and relation to sea-level change. Geology, in press.

    Google Scholar 

  • Grötsch, J., Billing, I., and Vahrenkamp, V., Carbon-isotope stratigraphy in shallow-water carbonates: implications for Cretaceous black-shale deposition. Sedimentology, 45, 623–634, 1998.

    Article  Google Scholar 

  • Heller, P.L., Anderson, D.L., and Angevine, C.L., Is the middle Cretaceous pulse of rapid sea-floor spreading real or necessary? Geology, 24, 491–494, 1996.

    Article  Google Scholar 

  • Herbert, T.D., and Fischer, T.D., Milankovitch climatic origin of mid-Cretaceous black shale rhythms in central Italy. Nature, 321, 739–743, 1986.

    Article  Google Scholar 

  • Herbert, T.D., and D’Hondt, S.L., Precessional climate cyclicity in late Cretaceous-early Tertiary marine sediments:a high resolution chronometer of Cretaceous-Tertiary boundary events. Earth and Planetary Science Letters, 99, 263–275, 1990.

    Article  Google Scholar 

  • Herbert, T.D., Premoli Silva, I., Erba, E, and Fischer, A.G., Orbital chronology of Cretaceous-Paleogene marine strata, in Geochronology, Time Scales, and Global Stratigraphic Correlation, edited by Kent, D.V., and Berggren, W.A. SEPM Special Publication 54, 81–93, 1995.

    Google Scholar 

  • Herbert, T.D., Gee, J., and DiDonna, S., Precessional cycles in the Upper Cretaceous pelagic sediments of the South Atlantic: Long term patterns from high frequency climate variations, in Evolution of the Cretaceous Ocean-Climate System, edited by Barrera, E., and Johnson, CG, Boulder, Colorado, Geological Society of America Special Paper 332, in press.

    Google Scholar 

  • Huang, Z, Boyd, R., and O’Connell, S., Upper Cretaceous cyclic sediments from ODP Hole 122-762 C-Exmouth Plateau, N.W. Australia, in Proceedings of the Ocean Drilling Program, Scientific Results, edited by Rad, U, Haq, B.U. et al., 122, 259–277, 1992.

    Google Scholar 

  • Ingram, R.L., Coccioni, R., Montanari, A., and Richter, F.M., Strontium isotopic composition of mid-Cretaceous seawater, Science, 264, 546–550, 1994.

    Article  Google Scholar 

  • Jarvis, I., Carson, G.A., Cooper, M.K.E., Hart, M.B., Leary, P.N., Tocher, B.A., Horne, D., and Rosenfeld, A., Microfossil assemblages and the Cenomanian-Turonian (Late Cretaceous) oceanic anoxic event. Cretaceous Research, 9, 3–103, 1988.

    Article  Google Scholar 

  • Jenkyns, H.C., Cretaceous anoxic events: from continents to oceans. Journal of the Geological Society of London, 137, 171–188, 1980.

    Article  Google Scholar 

  • Jenkyns, H.C., Carbon-isotope stratigraphy and paleoceanographic significance of the Lower Cretaceous shallow-water carbonates of Resolution Guyot, Mid-Pacific Mountains, in Proceedings of the Ocean Drilling Program, Scientific Results, edited by Winterer, E.L., Sager, W.W., Firth, J.V., and Sinton, J.M., 143, 99–108, 1995.

    Google Scholar 

  • Jenkyns, H.C., Mesozoic anoxic events and palaeoclimate: Zentralblatt für Geologie und Paläontologie, in press.

    Google Scholar 

  • Jenkyns, H.C., Gale, A.S., and Corfield, R.M., Carbon-and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance. Geological Magazine, 131, 1–34, 1994.

    Article  Google Scholar 

  • Jones, C.E., Jenkyns, H.C., Coe, A.L., and Hesselbo, S.P., Strontium isotopic variations in Jurassic and Cretaceous seawater. Geochemica Cosmochimica Acta, 58, 3061–3074, 1994.

    Article  Google Scholar 

  • Kaiho, K., Global climatic forcing of deep-sea benthic foraminiferal test size during the past 120m. y. Geology, 26, 491–494, 1998.

    Article  Google Scholar 

  • Kaiho, K., and Hasegawa, T., End-Cenomanian benthic foraminiferal extinctions and oceanic dysoxic events in the northwestern Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 111, 29–43, 1994.

    Article  Google Scholar 

  • Kaiho, K., Arinobu, T., Ishiwatari, R., Morgans, H., Okada, H., Takeda, N., Tazaki, N., Zhou, G., Kajiwara, Y., Matsumoto, R., Hirai, A., Niitsuma, N, and Wada, H., Latest Paleocene benthic foramiferal extinction and environmental changes at Tawanui, New Zealand. Paleoceanography, 11, 447–465, 1996.

    Google Scholar 

  • Kelly, D.C., Bralower, T.J., Zachos, J.C., Premoli Silva, I., and Thomas, E., Rapid diversification of planktonic foraminifera in the tropical Pacific (ODP Site 865) during the late Paleocene thermal maximum. Geology, 24, 423–426, 1996.

    Article  Google Scholar 

  • Kennett, J.P., and Stott, L.D., Abrupt deep sea warming, paleoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature, 353, 319–322, 1991.

    Google Scholar 

  • Kerr, A.C., Ocean plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian-Turonian boundary? Geological Society of London Journal, 155, 619–626, 1998.

    Article  Google Scholar 

  • Koch, P.L., Zachos, J.C., and Gingerich, P.D., Coupled Isotopic Changes in Marine and Continental Carbon Reservoirs at the Paleocene-Eocene Boundary. Nature, 358, 319–322, 1992.

    Article  Google Scholar 

  • Koch, P.L., Zachos, J.C., and Dettman, D.L., Stable isotope stratigraphy and paleoclimatology of the Paleogene Bighorn Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 115, 61–89, 1995.

    Article  Google Scholar 

  • Kuhnt, W., and Wiedmann, J., Cenomanian-Turonian source rocks: paleobiogeographic and paleoenviron-mental aspects, in Paleogeography, paleoclimate and source rocks, AAPG Studies in Geology, edited by Huc, A.-Y., Tulsa, 213–231, 1995.

    Google Scholar 

  • Larson, R.L., Latest pulse of Earth: Evidence for a mid-Cretaceous superplume: Geology, 19, 547–550, 1991a.

    Google Scholar 

  • Larson, R.L., Geological consequences of superplumes. Geology, 19, 963–966, 1991b.

    Article  Google Scholar 

  • Leckie, R.M., An oceanographic model for the early evolutionary history of planktonic foraminifera: Palaeogeography, Palaeoclimatology, and Palaeoecology, 73, 107–138, 1989.

    Article  Google Scholar 

  • Menegatti, A.P., Weissert, H., Brown, R.S., Tyson, R.V., Farrimond, P., Strasser, A., and Caron, M., High resolution δ13C-stratigraphy through the early Aptian “Livello Selli” of the Alpine Tethys. Paleoceanography, 13, 530–545, 1998.

    Article  Google Scholar 

  • Meng, J., and McKenna, M.C., Faunal turnovers of Paleogene mammals from the Mongolian Plateau. Nature, 394, 364–369, 1998.

    Article  Google Scholar 

  • Norris, R.D., and Wilson, P.A., Low-latitude sea-surface temperatures for the mid-Cretaceous and the evolution of planktic foraminifera. Geology 26, 823–826, 1998.

    Article  Google Scholar 

  • Norris, R.D., Kroon, D., and Klaus, A., et al., Blake Nose paleoceanographic Transect, Western North Atlantic, Proceedings of the Ocean Drilling Program, Initial reports, v. 171B, pp. 1–749, 1998.

    Google Scholar 

  • Norris, R.D., Klaus, A., and Kroon, D. and the Leg 171B Science Party, Geological history and depositional framework of western North Atlantic seismic sequences on Blake Nose: middle Eocene deep water, The Paleocene-Eocene boundary and mass wasting of the continental margin during the K-T impact event. in Cretaceous-Paleogene Western North Atlantic Paleoceanography, edited by Kroon, D., Norris, R.D., and Klaus, A., Geological Society of London Special Publication, submitted.

    Google Scholar 

  • O’Dogherty, L., Biochronology and paleontology of middle Cretaceous radiolarians from Umbria-Marche Appennines (Italy) and Betic Cordillera (Spain), Mémoires de Géologie (Lausanne), 351, 1994.

    Google Scholar 

  • Park, J., and Herbert, T.D., Hunting for paleoclimatic periodicities in a sedimentary series with uncertain time scale, Journal of Geophysical Research v, 92B, 14,027–14,040, 1987.

    Google Scholar 

  • Schlanger, S.O., and Jenkyns, H.C., Cretaceous oceanic anoxic events: causes and consequences: Geologie en Mijnbouw, 55, 179–184, 1976.

    Google Scholar 

  • Schlanger, S.O., Arthur, M.A., Jenkyns, H.C., and Scholle, P.A., 1987, The Cenomanian-Turonian Oceanic Anoxic Event, I. Stratigraphy and distribution of organic carbon-rich beds and the marine δ13C excursion, in Marine Petroleum Source Rocks, edited by Brooks, J., and Fleet A.J., Geological Society of London Special Publication 26, 371–399, 1987.

    Google Scholar 

  • Schmitz, B., Asaro, F., Molina, E., Monechi, S., Von Salis, K., and Speijer, R., High-resolution iridium, δ13C, δ18O, foraminifera and nannofossil profiles across the latest Paleocene benthic extinction event at Zumaya, Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 133, 49–68, 1997.

    Article  Google Scholar 

  • Scholle, P.A., and Arthur, M.A., Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool: American Association of Petroleum Geologists Bulletin, 64, 67–87, 1980.

    Google Scholar 

  • Schwarzacher, W., and Fischer, A.G., 1982, Limestone-shale bedding and perturbations in the Earth’s orbit, in Cyclic and event stratification, edited by Einsele, G., and Seilacher, A., Springer-Verlag, 72–95, 1982.

    Google Scholar 

  • Sinninghe Damsté, J.S., and Köster, J., A euxunuc southern North Atlantic Ocean during the Cenomanian/ Turonian oceanic anoxic event. Earth and Planetary Science Letters, 158, 165–173, 1998.

    Article  Google Scholar 

  • Sinton, C.W., and Duncan, R.A., Potential links between ocean plateau volcanism and global ocean anoxia at the Cenomanian-Turonian boundary. Economic Geology, 92, 836–842, 1997.

    Article  Google Scholar 

  • Thomas, E., Biogeography of the late Paleocene benthic foraminiferal extinction, in Late Paleocene-Early Eocene Climatic and Biotic Events, edited by Aubry, M.-P., Lucas, S., and Berggren, W.A., New York: Columbia University Press, in press.

    Google Scholar 

  • Thomas, E., and Shackleton, N.J., The Paleocene-Eocene benthic foraminiferal extinction and stable isotope anomalies, in Correlations of the early Paleogene in Northwest Europe, edited by Knox, R.O., et al., Geological Society of London Special Publication, 101, 401–411, 1996.

    Google Scholar 

  • Weissert, H., and Lini, A., Ice age interludes during the time of Cretaceous greenhouse climate, in Controversies in Modern geology, edited by Müller, D.W., McKenzie, J.A., and Weissert, H., London, Academic Press, 173–191, 1991.

    Google Scholar 

  • Weissert, H., Lini, A., Föllmi, K.B., and Kuhn, O., Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events: a possible link?: Palaeogeography, Palaeoclimatology, Palaeecology, 137, 189–203, 1998.

    Article  Google Scholar 

  • Wing, S.L., Alroy, J., and Hickey, L.J., Plant and mammal diversity in the Paleocene to early Eocene of the Bighorn Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 115, 117–155, 1995.

    Article  Google Scholar 

  • Zachos, J.C., Lohmann, K.C., Walker, J.C.G., and Wise, S.W., Abrupt climate change and transient climates during the Paleogene: A marine perspective. Journal of Geology, 101, 191–213, 1993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kroon, D., Norris, R.D., Klaus, A., ODP Leg 171B scientific party., “extreme” climate working group. (1999). Variability of Extreme Cretaceous-Paleogene Climates. In: Abrantes, F., Mix, A.C. (eds) Reconstructing Ocean History. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4197-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4197-4_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6883-0

  • Online ISBN: 978-1-4615-4197-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics