Skip to main content

The Limits to Knowledge in Conservation Genetics

The Value of Effective Population Size

  • Chapter
Evolutionary Biology

Part of the book series: Evolutionary Biology ((EBIO,volume 32))

Abstract

Science is a “way of knowing” (Moore, 1984) that distinguishes itself by developing theories capable of prediction; however, in studies at the interface of evolution and the environment, this task can become formidable. The future direction of evolutionary change is intrinsically unpredictable, because the unit of study (the population) cannot be isolated from changes in its environment. In contrast, the physical sciences and most of Biology have been able to achieve the goal of prediction by studying systems that generally can be understood in terms of their internal properties. Thus, a particular type of cell or organism studied today is expected to be much the same when studied by subsequent generations of biologists. However, this expectation is lost when we are asked to consider populations and communities over even moderate periods of time: changes on the time scale of tens of years are commonplace, often dramatic, and often caused by unpredictable events external to the study unit. Short-term changes are primarily numerical, but evolutionary changes, both adaptive (e.g., Reznick et al., 1997) and random (e.g., due to a population bottleneck), can accumulate rapidly. The stochastic models of ecology and population genetics include unpredictable environmental effects, allowing us to make probabilistic predictions that can be quite precise when we consider averages over large numbers of populations, large numbers of genes, or long periods of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartley, D., Bagley, M., Gall, G., and Bentley, B., 1992, Use of linkage disequilibrium data to estimate effective size of hatchery and natural fish populations, Cons. Biol. 6:365–375.

    Article  Google Scholar 

  • Barton, N. H., and Whitlock, M. C., 1997, The evolution of metapopulations, in: Metapopulation Biology (I. Hanski and M. E. Gilpin, eds.), pp. 183–210, Academic Press, New York.

    Chapter  Google Scholar 

  • Begon, M., Krimbas, C. B., and Loukas, M., 1980, The genetics of Drosophila subobscura populations. XV. Effective size of a natural population estimated by three independent methods, Heredity 45:335–350.

    Article  Google Scholar 

  • Bell, G., 1982, The Masterpiece of Nature: The Evolution and Genetics of Sexuality, University of California Press, Berkeley.

    Google Scholar 

  • Burger, R., and Lynch, M., 1995, Evolution and extinction in a changing environment: A quantitative genetic analysis, Evolution 49:151–163.

    Article  Google Scholar 

  • Caro, T. M., and Laurenson, M. K., 1994, Ecological and genetic factors in conservation: A cautionary tale, Science 263:485–486.

    Article  PubMed  CAS  Google Scholar 

  • Caughley, G., 1994, Directions in conservation Biology, J. Anim. Ecol. 63:215–244.

    Article  Google Scholar 

  • Daszak, P., Cunningham, A. A., and Hyatt, A. D., 2000, Emerging infectious diseases of wildlife—Threats to biodiversity and human health, Science 287:4432–449.

    Article  Google Scholar 

  • Frankham, R., 1995a, Conservation genetics, Annu. Rev. Genet. 29:305–327.

    Article  CAS  Google Scholar 

  • Frankham, R., 1995b, Effective population size—Adult population size ratios in wildlife: A review, Genet. Res. 66:95–107.

    Article  Google Scholar 

  • Franklin, I. R., 1980, Evolutionary changes in small populations, in: Conservation Biology: An Evolutionary-Ecological Perspective (M. E. Soulé and B. A. Wilcox, eds.), pp. 135–149, Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Fu, Y-X., 1997, Coalescent theory for a partially selling population, Genetics 146:1489–1499.

    PubMed  CAS  Google Scholar 

  • Gilpin, M., 1991, The genetic effective size of a metapopulation, Biol. J. Linn. Soc. 42:165–175.

    Article  Google Scholar 

  • Gilpin, M. E., and Soulé, M. E., 1986, Minimum viable populations: Processes of species extinctions, in: Conservation Biology: The Science of Scarcity and Diversity (M. E. Soulé, ed.), pp. 19–34, Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Gilpin, M., and Wills, C., 1991, MHC and captive breeding: A rebuttal, Cons. Biol. 5:554–555.

    Article  Google Scholar 

  • Grant, B. R., and Grant, P. R., 1993, Evolution of Darwin’s finches caused by a rare climatic event, Proc. Roy. Soc. Lond. B 251:111–117.

    Article  Google Scholar 

  • Hedrick, P. W., and Gilpin, M. E., 1996, Genetic effective size of a metapopulation, in: Metapopulation Dynamics: Ecology, Genetics, and Evolution (I. A. Hanski and M. E. Gilpin, eds.), pp. 165–181, Academic Press, New York.

    Google Scholar 

  • Hess, G. R., 1994, Conservation corridors and contagious disease: A cautionary note, Cons. Biol. 8:256–262.

    Article  Google Scholar 

  • Hill, W. G., 1972, Effective size of populations with overlapping generations, Theor. Pop. Biol. 3:278–289.

    Article  CAS  Google Scholar 

  • Hughes, A. L., 1991, MHC polymorphism and the design of captive breeding programs, Cons. Biol. 5:249–251.

    Article  Google Scholar 

  • Husband, B. C., and Barrett, C. H., 1992, Effective population size and genetic drift in tristylous Eichornia paniculata (Pontederiaceae), Evolution 46:1875–1890.

    Article  Google Scholar 

  • Jorde, P. E., and Ryman, N., 1996, Demographic genetics of brown trout (Salmo trutta) and estimation of effective population size from temporal change of allele frequencies, Genetics 143:1369–1381.

    PubMed  CAS  Google Scholar 

  • Kimura, M., 1968, Evolutionary rate at the molecular level, Nature 217:624–626.

    Article  PubMed  CAS  Google Scholar 

  • King, L. M., 1993, Origins of genotypic variation in north American dandelions inferred from ribosomal DNA and chloroplast DNA restriction enzyme analysis, Evolution 47:136–151.

    Article  CAS  Google Scholar 

  • Kuhner, M. K., Yamato, J., and Felsenstein, J., 1995, Estimating effective population size and mutation rate from sequence data using Metropolis-Hastings sampling, Genetics 140:1421–1430.

    PubMed  CAS  Google Scholar 

  • Lande, R., 1988, Genetics and demography in biological conservation, Science 241:1455–1460.

    Article  PubMed  CAS  Google Scholar 

  • Lande, R., 1993, Risks of population extinction from demographic and environmental stochasticity, and random catastrophes, Am. Natur. 142:911–927.

    Article  Google Scholar 

  • Lande, R., 1995a, Breeding plans for small populations based on the dynamics of quantitative trait variance, in: Population Management for Survival and Recovery (X D. Ballou, M. Gilpin, and T. J. Foose, eds.), pp. 318–340, Columbia University Press, New York.

    Google Scholar 

  • Lande, R., 1995b, Mutation and conservation, Cons. Biol. 9:782–791.

    Article  Google Scholar 

  • Lynch, M., 1994, Neutral models of phenotypic evolution, in: Ecological Genetics (L. A. Real, ed.), pp. 86–108, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Lynch, M., 1996, A quantitative-genetic perspective on conservation issues, in: Conservation Genetics: Case Histories from Nature (J. C. Avise, and J. L. Hamrick, eds.), pp. 471–501, Chapman and Hall, New York.

    Google Scholar 

  • Lynch, M., and Hill, W. G., 1986, Phenotypic evolution by neutral mutation, Evolution 40:915–935.

    Article  Google Scholar 

  • Lynch, M., Conery, J., and Burger, R., 1995, Mutation accumulation and the extinction of small populations, Am. Natur. 146:489–518.

    Article  Google Scholar 

  • Mace, G. M., and Lande, R., 1991, Assessing extinction threats: Towards a reevaluation of IUCN threatened species categories, Cons. Biol. 5:148–157.

    Article  Google Scholar 

  • Menotti-Raymond, M., and O’Brien, S. J., 1993, Dating the genetic bottleneck of the African cheetah, Proc. Natl. Acad. Sci. USA 90:3172–3176.

    Article  PubMed  CAS  Google Scholar 

  • Miller, P. S., and Hedrick, P. W., 1991, MHC polymorphism and the design of captive breeding programs: Simple solutions are not the answer, Cons. Biol. 5:556–558.

    Article  Google Scholar 

  • Moore, J. A., 1984, Science as a way of knowing—Evolutionary Biology, Am. Zool. 24:467–534.

    Google Scholar 

  • Nunney, L., 1993, The influence of mating system and overlapping generations on effective population size, Evolution 47:1329–1341.

    Article  Google Scholar 

  • Nunney, L., 1995, Measuring the ratio of effective population size to adult numbers using genetic and ecological data, Evolution 49:389–392.

    Article  Google Scholar 

  • Nunney, L., 1996, The influence of variation in female fecundity on effective population size, Biol. J. Linn. Soc. 59:411–425.

    Article  Google Scholar 

  • Nunney, L., 1999, The effective size of a hierarchically structured population, Evolution 53:1–10.

    Article  Google Scholar 

  • Nunney, L., and Campbell, K. A., 1993, Assessing minimum viable population size: Demography meets population genetics, Trends Ecol. Evol. 8:234–239.

    Article  PubMed  CAS  Google Scholar 

  • Nunney, L., and Elam, D. R., 1994, Estimating the effective size of conserved populations, Cons. Biol. 8:175–184.

    Article  Google Scholar 

  • Pudovkin, A. I., Zaykin, D. V., and Hedgecock, D., 1996, On the potential for estimating the effective number of breeders from heterozygote-excess in progeny, Genetics 144:383–387.

    PubMed  CAS  Google Scholar 

  • Radtkey, R. R., Becker, B., Miller, R. D., Riblet, R., and Case, T. J., 1996, Variation and evolution of Class I MHC in sexual and parthenogenetic geckos, Proc. Roy. Soc. Lond. B 263:1023–1032.

    Article  CAS  Google Scholar 

  • Reznick, D. N., Shaw, F. H., Rodd, F. H., and Shaw, R. C., 1997, Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata), Science 275:1934–1937.

    Article  PubMed  CAS  Google Scholar 

  • Saccheri, I., Kuussaari, M., Kankare, M., Vikman, P., Fortelius, W., and Hanski, I., 1998, Inbreeding and extinction in a butterfly metapopulation, Nature 392:491–494.

    Article  CAS  Google Scholar 

  • Shaffer, M. L., 1981, Minimum population sizes for species conservation, Bioscience 31:131–134.

    Article  Google Scholar 

  • Vucetich, J. A., Waite, T. A., and Nunney, L., 1997, Fluctuating population size and the ratio of effective to census population size (N e /N), Evolution 51:2017–2021.

    Article  Google Scholar 

  • Waples, R. S., 1989, A generalized approach for estimating effective population size from temporal changes in allele frequency, Genetics 121:379–391.

    PubMed  CAS  Google Scholar 

  • Waser, N. M., 1993, Population structure, optimal outbreeding, and assortative mating in angiosperms, in: The Natural History of Inbreeding and Outbreeding: Theoretical and Empirical Perspectives (N. W. Thornhill, ed.), pp. 173–199, University of Chicago Press, Chicago.

    Google Scholar 

  • Whitlock, M. C., and Barton, N. H., 1997, The effective size of a subdivided population, Genetics 146:427–441.

    PubMed  CAS  Google Scholar 

  • Wright, S., 1931, Evolution in Mendelian populations, Genetics 16:97–159.

    PubMed  CAS  Google Scholar 

  • Wright, S., 1938, Size of population and breeding structure in relation to evolution, Science 87:430–431.

    Google Scholar 

  • Wright, S., 1943, Isolation by distance, Genetics 28:114–138.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nunney, L. (2000). The Limits to Knowledge in Conservation Genetics. In: Clegg, M.T., Hecht, M.K., Macintyre, R.J. (eds) Evolutionary Biology. Evolutionary Biology, vol 32. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4135-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4135-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6854-0

  • Online ISBN: 978-1-4615-4135-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics