Skip to main content

Improved Treatment of Tumours in vivo by Combining the Bioreductive Drug RSU-1069, Hydralazine and Hyperthermia

  • Chapter
Selective Activation of Drugs by Redox Processes

Part of the book series: NATO ASI Series ((NSSA,volume 198))

Abstract

It has been suggested that one of the reasons for failure to achieve local tumour control in some clinical radiotherapy schedules is the presence of hypoxic cells1,2. Although resistant to radiation it has been found that these cells are also sensitive to certain drugs3 and hyperthermia4. As a result, attempts are now being made to actually increase the level of tumour hypoxia before subsequent exposure to these hypoxic cell cytotoxic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Diseche, Chemical sensitizers for hypoxic cells: A decade of experience in clinical radiotherapy, Radiother. Oncol., 3:97, (1985).

    Article  Google Scholar 

  2. R. S. Bush, The significance of anaemia in clinical radiation therapy, Int. J. Radiât. Oncol. Biol. Phys., 12: 2047 (1986).

    Article  PubMed  CAS  Google Scholar 

  3. B. A. Teicher, J. S. Lazo, and A. C. Sartorelli, Classification of antineoplastic agents by their selective toxicities towards oxygenated and hypoxic tumor cells, Cancer Res., 41:73 (1981).

    PubMed  CAS  Google Scholar 

  4. H. D. Suit and L. E. Gerweck, Potential for hyperthermia and radiation therapy, Cancer Res., 39:2290 (1979).

    PubMed  CAS  Google Scholar 

  5. M. Nickerson, Vasodilator drugs, in: “The Pharmacological Basis of Therapeutics”, 5th edn, L. S. Goodman and A. Gilman, eds., MacMillan, New York (1975).

    Google Scholar 

  6. F. J. Sutton, Vasodilator therapy, Am. J. Med., 80:54 (1986).

    Article  PubMed  CAS  Google Scholar 

  7. D. J. Chaplin and B. Acker, The effect of hydralazine on the tumor cytotoxicity of the hypoxic cell cytotoxin RSU-1069: Evidence for therapeutic gain, Int. J. Radiat. Oncol. Biol. Phys., 13:579 (1987).

    Article  PubMed  CAS  Google Scholar 

  8. J. M. Brown, Exploitation of bioreductive agents with vasoactive drugs, in: “Proceedings of the 8th International Congress of Radiation Research”, vol. 2, E. M. Fielden, J. F. Fowler, J. H. Hendry, and D. Scott, eds., Taylor and Francis, London (1987).

    Google Scholar 

  9. M. R. Horsman, K. L. Christensen, and J. Overgaard, Hydralazine induced enhancement of hyperthermic damage in a C3H mammary carcinoma in vivo, Int. J. Hyperthermia, 5:123 (1989).

    Article  PubMed  CAS  Google Scholar 

  10. R. Sridhar, and R. Sutherland, Hyperthermic potentiation of cytotoxicity of Ro-07-0582 in multicell spheroids, Int. J. Radiat. Oncol. Biol. Phys., 2:531 (1977).

    Article  PubMed  CAS  Google Scholar 

  11. I. J. Stratford and G. E. Adams, Effect of hyperthermia on differential cytotoxicity of a hypoxic cell radiosensitizer, Ro-07-0582, on mammalian cells in vitro, Br. J. Cancer, 35: 307 (1977).

    Article  PubMed  CAS  Google Scholar 

  12. N. M. Bleehen, D. J. Honess, and J. E. Morgan, Interaction of hyperthermia and the hypoxic cell sensitizer Ro-07-0582 on the EMT6 mouse tumor, Br. J. Cancer, 35:299 (1977).

    Article  PubMed  CAS  Google Scholar 

  13. J. Overgaard, Simultaneous and sequential hyperthermia and radiation treatment of an experimental tumor and its surrounding normal tissue in vivo, Int. J. Radiat. Oncol. Biol. Phys., 6:1507 (1980).

    Article  PubMed  CAS  Google Scholar 

  14. T. Kamura, O. S. Nielsen, J. Overgaard, and A. H. Andersen,Development of thermotolerance during fractionated hyperthermia in a solid tumor in vivo, Cancer Res., 42:1744 (1982).

    PubMed  CAS  Google Scholar 

  15. L. A. Sapirstein, Regional blood flow by fractional distribution of indicators, Am. J. Physiol., 193:161 (1958).

    PubMed  CAS  Google Scholar 

  16. P. L. Olive, R. E. Durand, and D. J. Chaplin, Cytotoxicity of RSU 1069 in spheroids and murine tumours, Int. J. Radiat. Oncol. Biol. Phys., 13:1361 (1987).

    Article  PubMed  CAS  Google Scholar 

  17. D. J. Honess, P. Workman, J. E. Morgan, and N. M. Bleehen, Effects of local hyperthermia on the pharmacokinetics of misonidazole in the anaesthetised mouse, Br. J. Cancer, 41: 529 (1980).

    Article  PubMed  CAS  Google Scholar 

  18. M. I. Walton, N. M. Bleehen, and P. Workman, Effects of localized tumour hyperthermia on pimonidazole (Ro 03–8799) pharmacokinetics in mice, Br. J. Cancer, 59:667 (1989).

    Article  PubMed  CAS  Google Scholar 

  19. C. W. Song, Effect of local hyperthermia on blood flow and raicroenvironment: A review, Cancer Res., 44: 4721S (1984).

    PubMed  CAS  Google Scholar 

  20. P. Workman and M. I. Walton, Pharmacology of the mixed-function radio- and chemosensitizers CB1954 and RSU-1069, Int. J. Radiat. Oncol. Biol. Phys., 10:1307 (1984).

    Article  PubMed  CAS  Google Scholar 

  21. H. D. Suit, Hyperthermia in the treatment of tumors, in: “Proc. Int. Symp. Cancer Therapy by Hyperthermia and Radiation”, American College of Radiology, Washington (1975).

    Google Scholar 

  22. S. A. Hill and J. Denekamp, The effect of vascular occlusion on the thermal sensitization of a mouse tumour, Br. J. Radiol., 51:997 (1978).

    Article  PubMed  CAS  Google Scholar 

  23. M. R. Horsman, J. Overgaard, and D. J. Chaplin, The interaction between RSU-1069, hydralazine and hyperthermia in a C3H mammary carcinoma as assessed by tumour growth delay, Acta Oncol., 27:861 (1988).

    PubMed  CAS  Google Scholar 

  24. J. C. Lindegaard and J. Overgaard, Factors of importance for the development of the step-down heating effect in a C3H mammary carcinoma in vivo, Int. J. Hyperthermia, 3:79 (1987).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Horsman, M.R., Christensen, K.L., Chaplin, D.J., Overgaard, J. (1990). Improved Treatment of Tumours in vivo by Combining the Bioreductive Drug RSU-1069, Hydralazine and Hyperthermia. In: Adams, G.E., Breccia, A., Fielden, E.M., Wardman, P. (eds) Selective Activation of Drugs by Redox Processes. NATO ASI Series, vol 198. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3768-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3768-7_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6679-9

  • Online ISBN: 978-1-4615-3768-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics