Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 198))

Abstract

By definition, bioreductive anticancer agents require metabolic reduction to generate toxic species. In the case of bioreductive alkylating agents, activation by reductase enzymes is reversed by molecular oxygen. In some cases bioreduction can lead to detoxification. Thus the specificity of bioreductive drugs will be dependent upon the relative activities of appropriate activating and deactivating reductases in tumour versus normal tissues, as well as the comparative oxygen levels. Considerably greater attention has been focused upon oxygen as a controlling factor. Our complementary approach has been to concentrate on the molecular enzymology of reductive bioactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Bellomo, H. Thor, L. Eklow-Lastrom, P. Nicotera, and S. Orrenius. Oxidative stress — mechanisms of cytotoxicity, Chemica Scripta, 27A:117 (1987).

    CAS  Google Scholar 

  2. L. Ernster. DT Diaphorase: A historical review, Chemica Scripta, 27A:1 (1987).

    CAS  Google Scholar 

  3. N. R. Bachur, S.L. Gordon, M. V. Gee, and H. Kon. NADPH- cytochrome P-450 reductase activation of quinone anticancer agents to free radicals, Proc. Natl. Acad. Sci., 76:954 (1979).

    Article  PubMed  CAS  Google Scholar 

  4. C. A. Pritsos, and A. C. Sartorelli. Generation of reactive oxygen radicals through bioactivation of mitomycin C antibiotics, Cancer Res., 46:3528 (1986).

    PubMed  CAS  Google Scholar 

  5. S. S. Pan, P. A. Andrews, and C. J. Glover. Reductive activation of mitomycin C and mitomycin C metabolites catalyzed by NADPH-cytochrome P-450 reductase and xanthine oxidase, J. Biol. Chem., 259:959 (1984).

    PubMed  CAS  Google Scholar 

  6. M. Tomasz, R. Lipman, C. Dondapati, J. Pawlak, G. L. Verdine, and K. Nakanishi. Isolation and structure of a covalent cross- link adduct between mitomycin C and DNA, Science, 235:1204 (1987).

    Article  PubMed  CAS  Google Scholar 

  7. B. M. Hoey, J. Butler, and A. J. Swallow. Reductive activation of mitomycin C, Biochemistry, 27:2608 (1988).

    Article  PubMed  CAS  Google Scholar 

  8. P. L. Gutierrez. Mechanism(s) of bioreductive activation: The example of diaziquone (AZQ), Free Radicals in Biology and Medicine, 6:405 (1989).

    Article  CAS  Google Scholar 

  9. K. Ruckpaul, and H. Rein. “Cytochrome P-450”, Akademie-Verlag, Berlin (1984).

    Google Scholar 

  10. C. R. Wolf, R. Meechan, M. D. Burke, D. J. Adams, F. Oesch, T. Friedberg, M. Adesnik, and N. Hastie. Molecular aspects of cytochrome P-450 monooxygenases: Characterization of some constitutively expressed forms, in: “Drug Metabolism — From Molecules to Man”, D. J. Benford, J. W. Bridges, and G. G. Gibson, eds., Taylor and Francis, London, p.14 (1987).

    Google Scholar 

  11. M. I. Walton and P. Workman. Nitroimidazole bioreductive metabolism: quantitation and characterisation of mouse tissue benznidazole reductases in vivo and in vitro, Biochem. Pharmac., 36:887 (1987).

    Article  CAS  Google Scholar 

  12. M. I. Walton, C. R. Wolf, and P. Workman. Molecular enzymology of the reductive bioactivation of hypoxic cell cytotoxins, Int. J. Radiat. Oncol. Biol. Phys., 16:983 (1989b).

    Article  PubMed  CAS  Google Scholar 

  13. S. R. Keyes, P. M. Fracasso, D. C. Heimbrook, S. Rockwell, S. G. Sligar, and A. C. Sartorelli. Role of cytochrome c reductase and DT-diaphorase in the biotransformation of mitomycin C, Cancer Res., 44:5628 (1984).

    Google Scholar 

  14. M. Haniu, T. Iyanagi, P. Miller, T. D. Lee, and J. E. Shively. Complete amino acid sequence of NADPH-cytochrome P-450 reductase from porcine hepatic microsomes, Biochemistry, 25:7906 (1986).

    Article  PubMed  CAS  Google Scholar 

  15. P. de la M. Hall, I. Stupans, W. Burgess, D. J. Birkett, and M. E. McManus. Immunohistochemical localization of NADPH- cytochrome P-450 reductase in human tissues, Carcinogenesis, 10:521 (1989).

    Article  Google Scholar 

  16. P. R. Hoban, M. I. Walton, C. N. Robson, J. Godden, I. J. Stratford, P. Workman, A. L. Harris, and I. D. Hickson. Mitomycin C resistance under aerobic but not hypoxic conditions in a mammalian cell line: Association with impaired drug activation and decreased NADPH: cytochrome P-450 reductase activity, Cancer Res, (submitted).

    Google Scholar 

  17. M. I. Walton, P. R. Hoban, C. N. Robson, P. Workman, A. L. Harris, and I. D. Hickson. Mitomycin C resistance: Association with decreased NADPH: cytochrome P-450 reductase activity in Chinese hamster ovary (CHO) cells in vitro, Br. J. Cancer, 60:474 (1989).

    Google Scholar 

  18. L. Ernster, R. W. Estabrook, P. Hockhstein, and S. Orrenius, eds. “DT-diaphorase: A quinone reductase with special functions in cell metabolism and detoxication”, Chemica Scripta, 27A (1987).

    Google Scholar 

  19. T. Iyanagi and I. Yamazaki. One-electron transfer reactions in biochemical systems. V. Difference in the mechanism of quinone reduction by the NADH dehydrogenase and the NAD(P)H dehydrogenase (DT-diaphorase), Biochem. Biophys. Acta, 216:282 (1970).

    Article  PubMed  CAS  Google Scholar 

  20. P. Workman, M. I. Walton, G. Powis, and J. J. Schlager. DT- diaphorase: Questionable role in mitomycin C resistance, but a target for novel bioreductive drugs? Br. J. Cancer, 60:800 (1989).

    Article  PubMed  CAS  Google Scholar 

  21. S. R. Keyes, S. Rockwell, and A. C. Sartorelli. Enhancement of mitomycin C cytotoxicity to hypoxic cells by dicoumarol in vivo and in vitro, Cancer Res., 45:213 (1985a).

    PubMed  CAS  Google Scholar 

  22. S. R. Keyes, S. Rockwell, and A. C. Sartorelli. Porfiromycin as a bioreductive alkylating agent with selective toxicity to hypoxic EMT6 tumor cells in vivo and in vitro, Cancer Res., 45:3642 (1985b).

    PubMed  CAS  Google Scholar 

  23. A. M. Dulhanty, M. Li, and G. F. Whitmore. Isolation of Chinese Hamster ovary cell mutants deficient in excision repair and mitomycin C bioactivation, Cancer Res., 49:117 (1989).

    PubMed  CAS  Google Scholar 

  24. R. S. Marshall and A. M. Rauth. Deficient activation by a human cell strain leads to mitomycin resistance under aerobic but not hypoxic conditions, Br. J. Cancer, 59:341 (1989).

    Article  PubMed  CAS  Google Scholar 

  25. J. J. Schlager and G. Powis. Mitomycin C is not metabolized by but is an inhibitor of human kidney NAD(P)H: (quinone-oxidoreductase. Cancer Chemother. Pharmacol., 22:126 (1988).

    Article  PubMed  CAS  Google Scholar 

  26. C. A. Pritsos, L. L. Pardini, A. J. Elliot, and R. S. Pardini. Relationship between the antioxidant enzyme DT-diaphorase and tumour response to mitomycin C treatment, in: “Oxygen Radicals in Biology and Medicine”, M. G. Simic and K. A. Taylor eds., Plenum Press, New York, p. 713 (1987).

    Google Scholar 

  27. M. J. De Long, A. B. Santamaria, and P. Talalay. Role of cytochrome P1-P450 in the induction of NAD(P)H: quinine reductase in a murine hepatoma cell line and its mutants, Carcinogenesis, 8:1549 (1987).

    Article  PubMed  Google Scholar 

  28. C. B. Pickett. Structure and regulation of glutathione S-transferase genes, Essays in Biochemistry, 23:116 (1987).

    PubMed  CAS  Google Scholar 

  29. J. A. Moscow and K. H. Cowan. Multidrug resistance, J. Natl. Cancer Inst., 80:14 (1988).

    Article  PubMed  CAS  Google Scholar 

  30. R. K. Burt and S. S. Thorgeirsson. Coinduction of MDR-1 multidrug-resistance and cytochrome P-450 genes in rat liver by xenobiotics, J. Natl. Cancer Inst., 80:1383 (1988).

    Article  PubMed  CAS  Google Scholar 

  31. R. J. Knox, M. P. Boland, F. Friedlos, B. Coles, C. Southan, and J. J. Roberts. The nitroreductase in Walker cells that activates 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB 1954) to 5-(aziridin-1-yl)-4-hydroxylamino-2-nitrobenzamide is a form of NAD(P)H dehydrogenase (quinone) (EC 1.6.99.2), Biochem. Pharmac., 37:4671 (1988a).

    Article  CAS  Google Scholar 

  32. R. J. Knox, F. Friedlos, M. Jarman, and J. J. Roberts. A new cytotoxic, DNA interstrand crosslinking agent, 5-(aziridin-1-yl)-2-4-hydroxylamino-2-nitrobenzamide, is formed from 5-(aziridin-1-yl)-2,4 dinitrobenzaraide (CB 1954) by a nitroreductase enzyme in Walker carcinoma cells, Biochem. Pharmac., 37:4661 (1988b).

    Article  CAS  Google Scholar 

  33. J. Koudstaal, B. Makkink, and S. H. Overdiep. Enzyme histochemical pattern in human tumours — II. Oxidoreductases in carcinoma of the colon and the breast, Eur. J. Cancer, 11:111 (1975).

    Article  PubMed  CAS  Google Scholar 

  34. N. A. Schor and C. J. Cornelisse. Biochemical and quantitative histochemical study of reduced pyridine nucleotide dehydrogenation by human colonic carcinomas, Cancer Res., 43:4850 (1983).

    PubMed  CAS  Google Scholar 

  35. N. A. Schor. DT-diaphorase and the cancer cell, Chemica Scripta, 27A:135 (1987).

    CAS  Google Scholar 

  36. J. J. Schlager, G. Powis. NAD(P)H: (Quinone-acceptor) oxidoreductase (QAO, E.C.1.6.99.2) activity in human normal and tumour tissues, Pharmacologist, 29:117 (1987).

    Google Scholar 

  37. J. D. Chapman. The detection and measurement of hypoxic cells in solid tumours, Cancer, 54:2441 (1984).

    Article  PubMed  CAS  Google Scholar 

  38. R. J. Maxwell, P. Workman, and J. R. Griffiths. Demonstration of tumor-selective retention of fluorinated nitroimidazole probes by 19F magnetic resonance spectroscopy in vivo. Int. J. Radiat. Oncol. Biol. Phys. 16:925 (1989).

    Article  PubMed  CAS  Google Scholar 

  39. D. S. Hewick. Reductive metabolism of nitrogen — containingfunctional groups, in: “Metabolic Basis of Detoxication: Metabolism of Functional Groups”, W. B. Jakoby, J. R. Bend, and J. Caldwell, eds., Academic Press, New York, p.151 (1982).

    Chapter  Google Scholar 

  40. M. I. Walton and P. Workman. Enzymology of the reductive bioactivation of SR 4233: a novel benzotriazine di-N-oxide hypoxic cell cytotoxin, Biochem. Pharmacol. (in press).

    Google Scholar 

  41. M. I. Walton and P. Workman. Pharmacokinetics and bioreductive metabolism of the novel benzotriazine di-N-oxide hypoxic cell cytotoxin SR 4233 (NSC 130181) in mice, Cancer Res. (submitted).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Workman, P., Walton, M.I. (1990). Enzyme-Directed Bioreductive Drug Development. In: Adams, G.E., Breccia, A., Fielden, E.M., Wardman, P. (eds) Selective Activation of Drugs by Redox Processes. NATO ASI Series, vol 198. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3768-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3768-7_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6679-9

  • Online ISBN: 978-1-4615-3768-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics