Skip to main content

The Antimicrobial Action of Lactic Acid Bacteria: Natural Food Preservation Systems

  • Chapter
The Lactic Acid Bacteria Volume 1

Abstract

Foods have been preserved by the action of lactic acid bacteria long before the science of microbiology began and it is probable that milk fermented by lactic acid bacteria was consumed at least 11 000 years ago. Man has unwittingly developed a number of fermentation processes to produce a large range of fermented dairy products, vegetables, meats, fish and cereals (Gilliland, 1985; Wood, 1985; Lücke & Earnshaw, 1991). In the Third World many of these fermented foods are produced under relatively unhygienic conditions and yet retain a good record with respect to microbiological safety. Fermentation also alters the sensory characteristics of foods often resulting in a product of increased commercial value, however, this chapter is concerned solely with the antimicrobial action of lactic acid bacteria, particularly those associated with food.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, M.R. & Hall, C.J. (1988). Growth inhibition of food-borne pathogens by lactic and acetic acids and their mixtures. International Journal of Food Science and Technology, 23 (3), 287–92.

    Google Scholar 

  • Ahmad, N. & Marth, E.H. (1989). Behaviour of Listeria monocytogenes at 7, 13, 21 and 35 degree in tryptose broth acidified with acetic, citric or lactic acid. Journal of Food Protection, 52 (10), 688–95.

    Google Scholar 

  • Ahn, C. & Stiles, M.E. (1990a). Antibacterial activity of lactic acid bacteria isolated from vacuum packaged meats. Journal of Applied Bacteriology, 69, 302–10.

    Google Scholar 

  • Ahn, C. & Stiles, M.E. (1990b). Plasmid-associated bacteriocin production by a strain of Carnobacterium piscicola from meat. Applied and Environmental Microbiology, 56 (8), 2503–10.

    Google Scholar 

  • Allgaier, H., Jung, G., Werner, R.G., Schneider, U. & Zahner, H. (1986). Epidermin: Sequencing of a heterodet tetracyclic 21-peptide amide antibiotic. European Journal of Biochemistry, 160, 9–22.

    Article  Google Scholar 

  • Anders, R.F., Hogg, D.M. & Jago, G.R. (1970). Formation of hydrogen peroxide by Group N streptococci and its effect on their growth and metabolism. Applied Microbiology, 19, 602–12.

    Google Scholar 

  • Axelsson, L., Chung, T.C., Dobrogosz, W.J. & Lindgren, L.E. (1987). Discovery of a new antimicrobial substance produced by Lactobacillus reuteri. FEMS Microbiology Reviews, 46, 65.

    Google Scholar 

  • Axelsson, L.T., Chung, T.C., Dobrogosz, W.J. & Lindgren, S.E. (1989). Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri. Microbial Ecology in Health and Disease, 2, 131–6.

    Article  Google Scholar 

  • Barefoot, S.E. & Klaenhammer, T.R. (1983). Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Applied and Environmental Microbiology, 45, 1808–15.

    Google Scholar 

  • Barefoot, S.E. & Klaenhammer, T.R. (1984). Purification and characterisation of the Lactobacillus acidophilus bacteriocin lactacin B. Antimicrobial Agents and Chemotherapy, 26 (3), 1328–34.

    Google Scholar 

  • Bhunia, A., Johnson, M.C. & Ray B. (1987). Direct detection of an antimicrobial peptide of Pediococcus acidilactici in sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Journal of Industrial Microbiology, 2, 319–22.

    Article  Google Scholar 

  • Bhunia, A.K., Johnson, M.C. & Ray, B. (1988). Purification, characterisation and antimicrobial spectrum of a bacteriocin produced by Pediococcus acidilactici. Journal of Applied Bacteriology, 65, 261–8.

    Google Scholar 

  • Bjorck, L.P. (1978). Antibacterial effect of the lactoperoxidase system on psychrotrophic bacteria in milk. Journal of Dairy Research, 45, 109–13.

    Article  Google Scholar 

  • Bjorck, K.E.L. & Claesson, C.O. (1980). Method of protecting milk from bacterial spoilage by adding thiocyanate and then hydrogen peroxide in the form of alkali percarbonate, alkali peroxide or urea hydrogen peroxide. Swedish Patent Application 412838.

    Google Scholar 

  • Bjorck, L., Rosen, C.D., Marshall, V.M. & Reiter, B. (1975). Antibacterial activity of the lactoperoxidase system in milk against pseudomonads and other Gram-negative bacteria. Applied Microbiology, 30, 199–204.

    Google Scholar 

  • Bjorck, L., Claesson, O. & Schuthes, W. (1979). The lactoperoxidase/thiocyanate/hydrogen peroxide system as a temporary preservative for raw milk in developing countries. Milchwissenschaft, 34, 726.

    Google Scholar 

  • Boehm, H.O. (1974). Desinfektion von Schafsdaermen kontaminiert mit dem Virus der Maul and Klauenseuche. Fleischwirtschaft, 54, 1051–3.

    Google Scholar 

  • Brackett, R.E. (1987). Effects of various acids on growth and survival of Yersinia enterocolitica. Journal of Food Protection, 50 (7), 598–601.

    Google Scholar 

  • Clarke, D.J., Robson, R.M. & Morris, J.G. (1975). Purification of two Clostridium bacteriocins by procedures appropriate to hydrophobic proteins. Antimicrobial Agents and Chemotherapy, 7 (3), 256–64.

    Google Scholar 

  • Cogan, T.M. (1980). Mesophilic lactic starters: a review. Lait, 60, 397–425.

    Article  Google Scholar 

  • Cogan, T.M., O’Dowd, M. & Mellerick, D. (1981). Effects of pH and sugar on acetoin production from citrate by Leuconostoc lactis. Applied and Environmental Microbiology, 41 (1), 1–8.

    Google Scholar 

  • Condon, S. (1983). Aerobic metabolism of lactic acid bacteria. Irish Journal of Food Science and Technology, 7, 15–25.

    Google Scholar 

  • Condon, S. (1987). Responses of lactic acid bacteria to oxygen. FEMS Microbiology Reviews, 46 269–80.

    Article  Google Scholar 

  • Daeschel, M.A. & Klaenhammer, T.R. (1985). Association of a 13.6 megadalton plasmid in Pediococcus pentosaceus with bacteriocin activity. Applied and Environmental Microbiology,50 (6), 1538–41.

    Google Scholar 

  • Daeschel, M.A., McKenny, M.C. & McDonald, L.C. (1986). Characterisation of a bacteriocin from Lactobacillus plantarum. Abstracts of the Annual Meeting of the American Society of Microbiology, ASM, Washington, DC, USA, p. 133.

    Google Scholar 

  • Daeschel, M.A., McKenny, M.C. & McDonald, L.C. (1990). Bacteriocidal activity of Lactobacillus plantarum C-11. Food Microbiology,7, 91–8.

    Article  Google Scholar 

  • Davey, G.P. (1981). Mode of action of diplococcin, a bacteriocin from Streptococcus cremoris 346. New Zealand Journal of Dairy Science and Technology, 16, 187–90.

    Google Scholar 

  • Davey, G.P. & Richardson, B.C. (1981). Purification and some properties of diplococcin from Streptococcus cremoris 346. Applied and Environmental Microbiology, 41 (1), 84–9.

    Google Scholar 

  • Davidson, P.M., Post, L.S., Branen, A.L. & McCurdy, A.R. (1983). Naturally occurring and miscellaneous food antimicrobials. In Antimicrobials in Foods, ed. A.L. Branen & P.M. Davidson. Marcel Dekker Inc., New York, USA, pp. 385–92.

    Google Scholar 

  • Dodd, H.M., Horn, N. & Gasson, M.J. (1990). Analysis of the genetic determinant for production of the antibiotic nisin. Journal of General Microbiology, 136 (3), 555–66.

    Google Scholar 

  • Eapen, K.C., Sankaram, R. & Vijayaraghavan, P.K. (1983). The present status of the use of nisin in processed foods. Journal of Food Science and Technology India, 20 (5), 231–40.

    Google Scholar 

  • Earnshaw, R.G. & Banks, J.G. (1988). Lactic acid bacteria: Application in food systems. Journal of Applied Bacteriology, 65 (6), vii.

    Google Scholar 

  • Earnshaw, R.G. & Banks, J.G. (1989). A note on the inhibition of Listeria monocytogenes NCTC 11994 in milk by an activated lactoperoxidase system. Letters in Applied Microbiology, 8,203–5.

    Article  Google Scholar 

  • Earnshaw, R.G. & Banks, J.G. (1990). Pediococcus pentosaceus FBB61: A versatile antagonist for the preservation of chilled foods. FEMS Microbiology Reviews, 87 (abstr. E3), 87.

    Google Scholar 

  • Earnshaw, R.G., Stratford, J. & Banks, J.G. (1988). The inhibition of pathogens and spoilage bacteria in raw minced beef and cottage cheese by Pediococcus pentosaceus FBB61 and FBB61B. Campden Food and Drink Research Association Technical Memorandum 516, CFDRA, Gloucestershire, UK.

    Google Scholar 

  • Earnshaw, R.G., Banks, J.G., Defrise, D. & Francotte, C. (1989a). The preservation of cottage cheese by an activated lactoperoxidase system. Food Microbiology, 6,285–8.

    Article  Google Scholar 

  • Earnshaw, R.G., Mitchell, A. & Banks, J.G. (1989b). The use of microbial antagonism to increase the safety and stability of chilled foods. Campden Food and Drink Research Association Technical Memorandum 544, CFDRA, Gloucestershire, UK.

    Google Scholar 

  • Earnshaw, R.G., Banks, J.G., Francotte, C. & Defrise, D. (1990). Inhibition of Salmonella typhimurium and Escherichia coli in an infant milk formula by an activated lactoperoxidase system. Journal of Food Protection, 53, 170–3.

    Google Scholar 

  • Eklund, T. (1989). Organic acids and esters. In Mechanisms of Action of Food Preservation Procedures, ed. G.W. Gould. Elsevier Scientific Publishers. London, UK, pp. 161–200.

    Google Scholar 

  • El-Gazzar, F.E., Rusul, G. & Marth, E.H. (1987). Growth and aflatoxin production by Aspergillus parasiticus NRRL 2999 in the presence of lactic acid and at different initial pH values. Journal of Food Protection, 50 (11), 940–4.

    Google Scholar 

  • FDA (1988). Nisin preparation: Affirmation of GRAS status as a direct human food ingredient. USA Food and Drug Administration Federal Regulation, 53, 11247.

    Google Scholar 

  • Frazer, A.C., Sharratt, M. & Hickman, J.R. (1962). The biological effects of food additives. I. Nisin. Journal of the Science of Food and Agriculture,13, 32–41.

    Article  Google Scholar 

  • Freese, E., Shen, C.W. & Galliers, E. (1973). Function of lipophilic acids as antimicrobial food additives. Nature, 241, 321–5.

    Article  Google Scholar 

  • Gillespy, T.G. (1957). Nisin trials. Fruit and Vegetable Canning and Quick Freezing Research Association. Leaflet 3, CFDRA, Gloucestershire, UK.

    Google Scholar 

  • Gilliland, S.E. (1985). Bacterial Starter Cultures for Foods. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Gilliland, S.E. & Speck, M.L. (1969). Biological responses of lactic streptococci and lactobacilli to catalase. Applied Microbiology, 17, 797–800.

    Google Scholar 

  • Gonzalez, C.F. (1988). Method for inhibiting bacterial spoilage and composition for this purpose. European Patent Application 88101624.0.

    Google Scholar 

  • Gonzalez, C.F. & Kunka, B.S. (1987). Plasmid-associated bacteriocin production and sucrose fermentation in Pediococcus acidilactici. Applied and Environmental Microbiology, 53, 2534–8.

    Google Scholar 

  • Gowans, J.L., Smith, N. & Florey, H.W. (1952). Some properties of nisin. British Journal of Pharmacology, 7, 438–40.

    Google Scholar 

  • Grau, F.H. (1980). Inhibition of the anaerobic growth of Brochothrix thermosphacta by lactic acid. Applied and Environmental Microbiology,40 (3), 433–6.

    Google Scholar 

  • Gross, E. & Morell, J.L. (1967). The presence of dehydroalanine in the antibiotic nisin and its relationship to activity. Journal of the American Chemical Society, 89, 2791–2.

    Article  Google Scholar 

  • Gross, E., Kiltz, H.H. & Nebelin, E. (1973). Subtilin part 6: The structure of subtilin. Hoppeseyler’s Physiologie and Chemie, 354, 810–12.

    Google Scholar 

  • Hamby, P.L., Sarell, J.W., Acuff, G.R., Vanderzant, C. & Cross, H.R. (1987). Spray chilling and carcass decontamination systems using lactic and acetic acid. Meat Science, 21 (1), 1–14.

    Article  Google Scholar 

  • Hansen, J.N., Banerjee, S. & Buchman, G.W. (1990). Potential of small ribosomally synthesised bacteriocins in design of new food preservatives. Journal of Food Safety, 10 (2), 119–30.

    Article  Google Scholar 

  • Harris, L.J., Daeschel, M.A., Stiles, M.E. & Klaenhammer, T.R. (1989). Antimicrobial activity of lactic acid bacteria against Listeria monocytogenes. Journal of Food Protection, 52, 384–7.

    Google Scholar 

  • Hastings, J.W. & Stiles, M.E. (1991). Antibiosis of Leuconostoc gelidum isolated from meat. Journal of Applied Bacteriology, 70, 127–34.

    Google Scholar 

  • Henning, S., Metz, R. & Hammes, W.P. (1986a). Studies on the mode of action of nisin. International Journal of Food Microbiology, 3 (3), 121–34.

    Article  Google Scholar 

  • Henning, S., Metz, R. & Hammes, W.P. (1986b). New aspects for the application of nisin based on its mode of action. International Journal of Food Microbiology, 3 (3), 135–41.

    Article  Google Scholar 

  • Hodgson, J. (1990). UK sweet on engineered yeast. Bio/Technology, 8, 281.

    Article  Google Scholar 

  • Hoover, D.G., Walsh, P.M., Kolaetis, K.M. & Daly, M.M. (1988). A bacteriocin produced by Pediococcus species associated with a 5.5 megadalton plasmid. Journal of Food Protection, 51 (1), 29–31.

    Google Scholar 

  • Huang, L., Forsberg, C.W. & Gibbins, L.N. (1986). Influence of external pH and fermentation products on Clostridium acetobutylicum intracellular pH and cellular distribution of fermentation products. Applied and Environmental Microbiology, 51, 1230–4.

    Google Scholar 

  • Hunter, D.R. & Segel, I.H. (1973). Effect of weak acids on amino acid transport by Penicillium chrysogenum: evidence for a proton or charge gradient as the driving force. Journal of Bacteriology,113, 1184–92.

    Google Scholar 

  • Hurst, A. (1981). Nisin. Advances in Applied Microbiology, 27, 85–123.

    Article  Google Scholar 

  • Jarvis, B., Jeffcoat, J. & Cheeseman, G.C. (1968). Molecular weight distribution of nisin. Biochimica et Biophyica Acta, 168, 153–7.

    Google Scholar 

  • Jay, J.M. & Rivers, G.M. (1984). Antimicrobial activity of some food flavouring compounds. Journal of Food Safety, 6 (2), 129–39.

    Article  Google Scholar 

  • Jay, J.M., Rivers, G.M. & Boisvert, W.E. (1983). Antimicrobial properties of alpha-dicarbonyl and related compounds. Journal of Food Protection, 46, 325–9.

    Google Scholar 

  • Joerger, M.C. & Klaenhammer, T.R. (1986). Characterisation and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. Journal of Bacteriology, 167, 439–46.

    Google Scholar 

  • Kabra, J.J. (1983). Medium chain fatty acids and esters. In Antimicrobials in Foods, ed. A.L. Branen & P.M. Davidson. Marcel Dekker Inc., New York, USA, pp. 109–40.

    Google Scholar 

  • Klerk, H.C., de & Smit, V.A. (1967). Properties of a Lactobacillus fermenti. Journal of General Microbiology, 48, 309–16.

    Google Scholar 

  • Kondo, J.K. & McKay, L.L. (1985). Gene transfer systems and molecular cloning in group N streptococci: a review. Journal of Dairy Science, 68, 2143–59.

    Article  Google Scholar 

  • Kozak, W., Bardowski, J. & Dobrzanski, W.T. (1978). Lactostrepcins-acid bacteriocins produced by lactic streptococci. Journal of Dairy Research, 45 (2), 247–57.

    Article  Google Scholar 

  • Langella, P. & Chopin, A. (1989). Effect of restriction modification systems on transfer of foreign DNA into Lactococcus lactis subsp. lactis. FEMS Microbiology Letters, 59, 301–5.

    Article  Google Scholar 

  • Lucey, C.A. & Condon, S. (1986). Active role of oxygen and NADH oxidase in growth and energy metabolism of Leuconostoc. Journal of General Microbiology, 132, 1789–96.

    Google Scholar 

  • Lücke, F.-K. & Schillinger, U. (1990). Possible use of bacteriocin producing lactobacilli in meats. FEMS Microbiology Reviews, 87 (abstr. E3), 85.

    Google Scholar 

  • Lücke, F.-K. & Earnshaw, R.G. (1991). Starter cultures. In Food Preservatives,ed. G.W. Gould & N.J. Russel. Blackie, Glasgow, UK, pp. 215–34.

    Google Scholar 

  • Marel, G.M., van der, Logtestijn, J.G., van & Mossel, D.A.A. (1988). Bacteriological quality of broiler carcasses as affected by in-plant lactic acid decontamination. International Journal of Food Microbiology, 6 (1), 31–42.

    Article  Google Scholar 

  • Marshall, V.M. (1987). Lactic acid bacteria: starters for flavour. FEMS Microbiology Reviews, 46, 327–36.

    Article  Google Scholar 

  • Mattick, A.T.R. & Hirsch, A. (1947). Further observation on an inhibitor from lactic streptococci. The Lancet, 2, 5.

    Article  Google Scholar 

  • Meek, S. (1989). Biotechnology regulation update. Australian Journal of Biotechnology, 3 (2), 100, 102–3.

    Google Scholar 

  • Mehta, A.M., Patel, K.A. & Dave, P.J. (1983). Purification and properties of the inhibitory protein isolated from Lactobacillus acidophilus A.C.1. Microbios., 38, 73–81.

    Google Scholar 

  • Mercenier, A., Robert, C., Romero, D.A. Castellino, I. Slos P. & Lemoine, Y. (1988). Development of an efficient spheroplast transformation procedure for Streptococcus thermophilus: the use of transfection to define a regeneration medium. Biochimie, 70, 567–77.

    Article  Google Scholar 

  • Monticello, D.J. & O’Connor, D. (1990). Lysis of Listeria monocytogenes by nisin. In Foodborne Listeriosis, ed. A.L. Miller, J.L. Smith & G.A. Somkuti. Elsevier Science Publishers, Amsterdam, The Netherlands, pp. 81–4.

    Google Scholar 

  • Mossel, D.A.A. (1989). Adequate protection of the public against food-transmitted diseases of microbial aetiology. International Journal of Food Microbiology,9 (4), 271–94.

    Article  Google Scholar 

  • Muriana, P.M. & Klaenhammer, T.R. (1987). Conjugal transfer of plasmidencoded determinants for bacteriocin production and immunity in Lactobacillus acidophilus 88. Applied and Environmental Microbiology, 53, 553–60.

    Google Scholar 

  • Muriana, P.M. & Klaenhammer, T.R. (1991). Purification and partial characterisation of lactacin F and bacteriocin produced by Lactobacillus acidophilus 11088. Applied and Environmental Microbiology,57 (1), 114–21.

    Google Scholar 

  • Netten, P., van & Mossel, D.A.A. (1980). The ecological consequences of decontaminating raw meat surfaces with lactic acid. Archiv für Lebensmittelhygiene, 31 (6), 190–1.

    Google Scholar 

  • Nielsen, J.W., Dickson, J.J. & Crouse, J.D. (1990). Use of a bacteriocin produced by Pediococcus acidilactic to inhibit Listeria monocytogenes associated with fresh meat. Applied and Environmental Microbiology,56 (7), 2142–5.

    Google Scholar 

  • O’Brien, R.T., Titus, D.S., Derlin, K.A., Stumbo, C.R. & Lewis, J.C. (1956). Antibiotics in food preservation. II: Studies on the influence of subtilin and nisin on the thermal resistance of food spoilage bacteria. Food Technology, 10, 352–5.

    Google Scholar 

  • Ogden, K. (1986). Nisin: a bacteriocin with a potential use in brewing. Journal of the Institute of Brewing, 92 (4), 379–83.

    Google Scholar 

  • Ogden, K. & Tubbs, R.S. (1985). Inhibition of beer spoilage lactic acid bacteria by nisin. Journal of the Institute of Brewing, 91 (6), 390–2.

    Google Scholar 

  • Ogden, K., Waites, M.J. & Hammond, J.R.M. (1988). Nisin and brewing. Journal of the Institute of Brewing, 94 (4), 233–8.

    Google Scholar 

  • Patterson, J.T. & Gibbs, P.A. (1979). Vacuum packaging of bovine edible offal. Meat Science,3 (3), 209–22.

    Article  Google Scholar 

  • Pucci, M.J., Vedamuthu, E.R., Kunka, B.S. & Vandenberg, P.A. (1988). Inhibition of Listeria monocytogenes by using bacteriocin PA-1 produced by Pediococcus acidilactici PAC1.0. Applied and Environmental Microbiology, 54 (1), 2349–53.

    Google Scholar 

  • Raccach, M. & Baker, R.C. (1978). Formation of hydrogen peroxide by meat starter cultures. Journal of Food Protection, 41, 798–9.

    Google Scholar 

  • Ramsier, H.R. (1960). The action of nisin on Clostridium but yricum. Archives of Microbiology, 41, 375–9.

    Google Scholar 

  • Rao, D.R. & Reddy, J.C. (1984). Effect of lactic fermentation of milk on milk lipids. Journal of Food Science, 49 (3), 748–50.

    Article  Google Scholar 

  • Rayman, K., Malik, N. & Hurst, A. (1983). Failure of nisin to inhibit the outgrowth of Clostridium botulinum in a model cured meat system. Applied and Environmental Microbiology, 46, 1450–2.

    Google Scholar 

  • Reddy, G.V., Shahani, K.M., Friend, B.A. & Chardan, R.C. (1983). Natural antibiotic activity of Lactobacillus acidophilus and bulgaricus. Cultured Dairy Products Journal, 18, 15–19.

    Google Scholar 

  • Reiss, J. (1976). Prevention of the formation of mycotoxins in whole wheat bread by citric and lactic acid. Experientia, 32, 168.

    Article  Google Scholar 

  • Reiss, J. (1977). Schimmelpilze and mycotoxinbildung auf brot and backwaren. Getreide Mel and Brot, 31, 265–70.

    Google Scholar 

  • Reiter, B. & Härnulv, B.G. (1984). Lactoperoxidase antibacterial systems: Natural occurrence, biological functions and practical applications. Journal of Food Protection, 47, 724–32.

    Google Scholar 

  • Reynolds, A.E. (1975). The mode of action of acetic acid on bacteria. Dissertation Abstracts B, 35, 4935–6.

    Google Scholar 

  • Rubin, H.E. (1978). Toxicological model for a two-acid system. Applied and Environmental Microbiology, 36 (4), 623–4.

    Google Scholar 

  • Rubin, H.E. & Vaughan, F. (1979). Elucidation of the inhibitory factors of yoghurt against Salmonella typhimurium. Journal of Dairy Science, 62 (12), 1873–9.

    Article  Google Scholar 

  • Sahl, H.G. (1985). Bactericidal cationic peptides involved in bacterial antagonism and host defence. Microbiological Sciences,2, 212–17.

    Google Scholar 

  • Sahl, H.G. & Brandis, H. (1981). Production, purification and chemical properties of an antistaphylococcal agent produced by Staphylococcus epidermis. Journal of General Microbiology, 127, 377–84.

    Google Scholar 

  • Sahl, H.G., Kordel, M. & Benz, R. (1987). Voltage-dependent depolarisation of bacterial membranes and artificial lipid bilayers by the peptide antibiotic nisin. Archives of Microbiology, 149 (2), 120–4.

    Article  Google Scholar 

  • Sanz, B., Selgas D., Parejo, I. & Ordonez, J.A. (1988). Characteristics of lactobacilli isolated from dry fermented sausages. International Journal of Food Microbiology, 6 (3), 199–205.

    Article  Google Scholar 

  • Schillinger, U. & Lücke, F.K. (1989). Antibacterial activity of Lactobacillus sake isolated from meat. Applied and Environmental Microbiology, 55 (8), 1901–6.

    Google Scholar 

  • Schillinger, U. & Holzapfel, W.H. (1990). Antibacterial activity of carnobacteria. Food Microbiology,7, 305–10.

    Article  Google Scholar 

  • Scott, V.N. & Taylor, S.L. (1981). Effect of nisin on the outgrowth of Clostridium botulinum spores. Journal of Food Science,46, 121–6.

    Article  Google Scholar 

  • Shehata, A.E., Magdoub, M.N.I., El Samragy, Y.A. & Sultan, N.E. (1985). Psychotrophic bacillus spores in milk as affected by L-cysteine, L-asparagine and nisin. Egyptian Journal of Dairy Science, 13 (2), 127–36.

    Google Scholar 

  • Shtenberg, A.J. & Ignat’ev, A.D. (1970). Toxicological evaluation of some combinations of food preservatives. Food and Cosmetics Toxicology, 8 (4), 369–80.

    Article  Google Scholar 

  • Simon, D. & Chopin, A. (1988). Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. Biochimie, 70, 559–66.

    Article  Google Scholar 

  • Simonetti, P., Cantoni, C. & Bernardi, G., de (1982). Colour loss in cooked sausages. Technologie Alimentari,5, 34–5.

    Google Scholar 

  • Somers, E.B. & Taylor, S.L. (1981). Further studies on the antibotulinal effectiveness of nisin in acidic media. Journal of Food Science,46, 1972–3.

    Article  Google Scholar 

  • Somkuti, G.A. & Steinberg, D.H. (1988). Genetic transformation of Streptococcus thermophilus by electroporation. Biochimie, 70, 570–85.

    Article  Google Scholar 

  • Spelhang, S.R. & Harlander, S.K. (1989). Inhibition of foodborne bacterial pathogens by bacteriocins from Lactococcus lactis and Pediococcus pentosaceus. Journal of Food Protection, 52 (12), 856–62.

    Google Scholar 

  • Subramanian, C.S. & Marth, E.H. (1968). Multiplication of Salmonella typhimurium in skim-milk with and without added hydrochloric, lactic and citric acids. Journal of Milk and Food Technology, 31 (1), 323–6.

    Google Scholar 

  • Talarico, T.L., & Dobrogosz, W.J. (1990). Purification and characterisation of glycerol dehydratase from Lactobacillus reuteri. Applied and Environmental Microbiology, 56 (4), 1194–7.

    Google Scholar 

  • Talarico, T.L. Axelsson, L.T., Novonty, J., Fiuzat, M. & Dobrogosz, W.J. (1990). Utilisation of glycerol as a hydrogen acceptor by Lactobacillus reuteri: purification of 1, 3, propanediol:NAD oxidoreductase. Applied and Environmental Microbiology, 56 (4), 943–8.

    Google Scholar 

  • Tamura, H., Kitta, K. & Shibamoto, T. (1991). Formation of reactive aldehydes from fatty acids in a Fee+/H2O2 oxidaion system. Journal of Agricultual and Food Chemistry,39, 439–42.

    Article  Google Scholar 

  • Taylor, S.L., Somers, E.B. & Krenger, L.A. (1985). Antibotulinal effectiveness of nisin-nitrite combination in culture medium and chicken frankfurter emulsions. Journal of Food Protection, 48, 234–9.

    Google Scholar 

  • Ten Brink, B., Minekus, M., Bol, J. & Huis in’t Veld, J.H.J. (1987). Production of antimicrobial compounds by lactobacilli. FEMS Microbiology Reviews,46 (abstr. E2), 64.

    Google Scholar 

  • Ten Brink, B., Huis in’t Veld, J.H.J. & Minekus, M. (1990). Antimicrobial activity of Lactobacillus M46: optimisation of production and partial characterisation. FEMS Microbiology Reviews, 87, (abstr. E16), 91.

    Google Scholar 

  • Thomas, E.L. & Pera, K.A. (1983). Oxygen metabolism of Streptococcus mutans: Uptake of oxygen and release of superoxide and hydrogen peroxide. Journal of Bacteriology, 154, 1236–44.

    Google Scholar 

  • Thorpe, R.H. (1960). The action of nisin on spoilage bacteria 1. The effect of nisin on the heat resistance of Bacillus stearothermophilus spores. Journal of Applied Bacteriology, 23, 136–43.

    Google Scholar 

  • Upreti, G.C. & Hindsdill, R.D. (1973). Production and mode of action of lactocin 27:bacteriocin from a homofermentative Lactobacillus. Antimicrobial Agents and Chemotherapy, 4, 487–94.

    Google Scholar 

  • Vincent, J.G., Veomett, R.C. & Riley, R.F. (1959). Antibacterial activity associated with Lactobacillus acidophilus. Journal of Bacteriology, 78, 477–84.

    Google Scholar 

  • Vos, W.M., de (1987). Gene cloning and expression in lactic streptococci. FEMS Microbiology Reviews, 46, 281–95.

    Google Scholar 

  • Voyod, J.J., de & Poullain, F. (1988). The leuconostocs. Characteristics: their role in dairy technology. Lait, 68, 249–79.

    Article  Google Scholar 

  • West, C.A. & Warner, P.J. (1988). Plantacin B, a bacteriocin produced by Lactobacillus planatarum NCDO 1193. FEMS Microbiology Letters, 49, 163–5.

    Google Scholar 

  • Wood, B.J.B. (1985). Microbiology of Fermented Foods (Vol 1 and 2). Elsevier Applied Science Publishers, London, UK.

    Google Scholar 

  • Zajdel, J.K., Ceglowski, P. & Drobrzarski, W.T. (1985). Mechanism of action of lactostrepcin 5, a bacteriocin produced by Streptococcus cremoris 202. Applied and Environmental Microbiology, 49, 969–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Earnshaw, R.G. (1992). The Antimicrobial Action of Lactic Acid Bacteria: Natural Food Preservation Systems. In: Wood, B.J.B. (eds) The Lactic Acid Bacteria Volume 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3522-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3522-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-85166-720-8

  • Online ISBN: 978-1-4615-3522-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics