Skip to main content

The Lactic Microflora of the Oral Cavity

  • Chapter
The Lactic Acid Bacteria Volume 1
  • 530 Accesses

Abstract

The oral cavity harbours a complex microbial community which is normally relatively stable and which, under certain circumstances, can cause major dental diseases such as caries and periodontitis. These diseases are of great economic and social importance throughout the world and because of this the environmental forces which both effect and affect the microbial colonisation of the mouth have been the subject of considerable research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbe, K., Takahashi, S. & Yamada, T. (1983). Purification and properties of pyruvate kinase from Streptococcus sanguis and activator specificity of pyruvate kinase from oral streptococci. Infection and Immunity, 39,1007–14.

    Google Scholar 

  • Abraham, S.N., Beachey, E.H. & Simpson, W.A. (1983). Adherence of Streptococcus pyogenes, Escherichia coli and Pseudomonas aeruginosa to fibronectin-coated and uncoated epithelial cells. Infection and Immunity, 41,1261–8.

    Google Scholar 

  • Andrewes, F.W. & Horder, J.T. (1906). A study of the streptococci pathogenic for man. Lancet,ii, 708–13.

    Google Scholar 

  • Backer-Dirks, O. (1966). Posteruptive changes in dental enamel. Journal of Dental Research,45, 504–11.

    Google Scholar 

  • Bannantyne, R.M. & Randall, C. (1977). Ecology of 350 isolates of group F streptococcus. American Journal of Clinical Pathology,67, 184–6.

    Google Scholar 

  • Beighton, D., Russell, R.R.B. & Hayday, H. (1981). The isolation and characterization of Streptococcus mutans serotype h from dental plaque of monkeys (Macaca fascicularis). Journal of General Microbiology, 124,271–9.

    Google Scholar 

  • Bowden, G.H., Hardie, J.M. & Slack, G.L. (1975). Microbial variations in approximal dental plaque. Caries Research, 9, 253–77.

    Google Scholar 

  • Bowden, G.H.W., Ellwood, D.C. & Hamilton, I.R. (1979). Microbial ecology of the oral cavity. Advances in Microbiology, 3, 135–217.

    Google Scholar 

  • Boyar, R.M. & Bowden, G.H. (1985). The microflora associated with the progression of incipient carious lesions in teeth of children living in water-fluoridated areas. Caries Research, 19,298–306.

    Google Scholar 

  • Bratthall, D. (1970). Demonstration of five serological groups of streptococcal strains resembling Streptococcus mutans. Odontologisk Revy, 21, 143–52.

    Google Scholar 

  • Buchanan, B.B. & Pine, L. (1967), Path of glucose breakdown and cell yields of a facultative anaerobe, Actinomyces naeslundii. Journal of General Microbiology, 46, 225–36.

    Google Scholar 

  • Carlsson, J. (1986). Metabolic activities of oral bacteria. In Textbook of Cariology, ed. A. Thylstrup & O. Fejerskov. Munksgaard, Copenhagen, Denmark, pp. 74–106.

    Google Scholar 

  • Carlsson, J., Soderholm, G. & Almfeldt, I. (1969). Prevalence of Streptococcus sanguis and Streptococcus mutans in the mouths of persons wearing full dentures. Archives of Oral Biology, 14, 243–52.

    Google Scholar 

  • Ciardi, J. (1983). Purification and properties of glucosyltransferases of Streptococcus mutans, a review. In Glucosyltransferases Glucans Sucrose and Dental Caries (a special supplement to Chemical Senses), ed. R.J. Doyle & J.E. Ciardi. Information Retrieval Ltd, Washington DC, pp. 51–64.

    Google Scholar 

  • Cisar, J.O. (1986). Fimbrial lectins of the oral actinomyces. In Microbial Lectins and Agglutinins: Properties and Biological Activity, ed. D. Mirelman. Wiley Interscience, New York, USA, pp. 183–96.

    Google Scholar 

  • Cisar, J.O., Kolenbrander, P.E. & McIntire, F.C. (1979). Specificity of coaggregation reactions between human oral streptococci and strains of Actinomyces viscosus and Actinomyces naeslundii. Infection and Immunity, 24, 742–52.

    Google Scholar 

  • Clarke, J.K. (1924). On the bacterial factor in the aetiology of dental caries. British Journal of Experimental Pathology, 5, 141–7.

    Google Scholar 

  • Coykendall, A.L. (1989). Classification and identification of the viridans streptococci. Clinical Microbiology Reviews, 2, 315–28.

    Google Scholar 

  • Dawes, C., Jenkins, G.N. & Tonge, C.H. (1963). The nomenclature of the integuments of the enamel surface of the teeth. British Dental Journal, 115, 65–8.

    Google Scholar 

  • Department of Health (1989). Dietary Sugars and Human Disease. Report on Health and Social Subjects. 37: HMSO, London.

    Google Scholar 

  • Dykhuizen, D. & Hartl, D. (1978). Transport by the lactose permease of Eschericia coli as the basis of lactose killing. Journal of Bacteriology, 135, 876–82.

    Google Scholar 

  • Ellwood, D.C. & Hamilton, I.R. (1982). Properties of Streptococcus mutans Ingbritt growing on limiting sucrose in a chemostat: Repression of phosphoenolpyruvate phosphotransferase transport system. Infection and Immunity, 36, 567–81.

    Google Scholar 

  • Ellwood, D.C., Phipps, P.J. & Hamilton, I.R. (1979). Effect of growth rate and glucose concentration on the activity of the phosphoenolpyruvate phosphotransferase system in Streptococcus mutans Ingbritt grown in continuous culture. Infection and Immunity, 23, 224–31.

    Google Scholar 

  • Embery, G. & Hogg, S.D. (1981). Some considerations on the interaction between oral streptococci and mucous glycoproteins. In Tooth Surface Interactions and Preventive Dentistry, ed. G. Rolla, T. Sonju & G. Embery. IRL Press, London, UK, pp. 83–94.

    Google Scholar 

  • Enright, J.J., Friessell, H.E. & Trescher, M.O. (1932). Studies of the cause and nature of dental caries. Journal of Dental Research, 12, 759–827.

    Google Scholar 

  • Facklam, R.R. (1977). Physiological differentiation of viridans streptococci. Journal of Clinical Microbiology, 5,184–201.

    Google Scholar 

  • Falker, W.A. & Burger, B.W. (1981). Microbial surface interactions: Reduction of the haemagglutination activity of the oral bacterium Fusobacterium nucleatum by absorption with Streptococcus and Bacteroides. Archives of Oral Biology, 26, 1015–25.

    Google Scholar 

  • Friberg, S. (1977). Colloidal phenomena encountered in the bacterial adhesion to the tooth surface. Swedish Dental Journal, 1, 207–14.

    Google Scholar 

  • Geddes, D.A.M. (1975). Acids produced by human dental plaque metabolism in situ. Caries Research, 9, 98–109.

    Google Scholar 

  • Gibbons, R.J. (1964). Bacteriology of dental caries. Journal of Dental Research, 43, 1021–8.

    Google Scholar 

  • Gibbons, R.J. (1983). Importance of glucosyltransferase in the colonization of oral bacteria. In Glucosyltransferases Glucans Sucrose and Dental Caries (a special supplement to Chemical Senses), ed. R.J. Doyle & J.E. Ciardi. Information Retrieval Ltd, Washington DC, pp. 11–19.

    Google Scholar 

  • Gibbons, R.J. (1984). Microbial ecology. Adherent interactions which may affect microbial ecology in the mouth. Journal of Dental Research, 63, 378–85.

    Google Scholar 

  • Gibbons, R.J. & Fitzgerald, R.J. (1969). Dextran-induced agglutination of Streptococcus mutans, and its potential role in the formation of microbial dental plaque. Journal of Bacteriology, 98, 341–6.

    Google Scholar 

  • Gibbons, R.J. & Nygaard, M. (1970). Interbacterial aggregation of plaque bacteria. Archives of Oral Biology, 15, 1397–400.

    Google Scholar 

  • Gibbons, R.J. & Houte, J., van, (1975a). Bacterial adherence in oral microbial ecology. Annual Review of Microbiology, 29, 19–44.

    Google Scholar 

  • Gibbons, R.J. & Houte, J. van, (1975b). Dental caries. Annual Review of Medicine, 26, 121–36.

    Google Scholar 

  • Gibbons, R.J., Cohen, L. & Hay, D.I. (1986). Strains of Streptococcus mutans and Streptococcus sobrinus attach to different pellicle receptors. Infection and Immunity, 52, 555–61.

    Google Scholar 

  • Glinsmann, W.H., Irausquin, H. & Park, Y.K. (1986). Evaluation of health aspects of sugars contained in carbohydrate sweeteners: report of Sugars Task Force, 1986. Journal of Nutrition, 116, S1–216.

    Google Scholar 

  • Gossling, J. (1988). Occurrence and pathogenicity of the Streptococcus milleri group. Reviews of Infectious Diseases, 10, 257–85.

    Google Scholar 

  • ‘S-Gravenmade, E.J., & Panders, A.K. (1981). Clinical applications of saliva substitutes. In Frontiers of Oral Physiology (Vol. 3) The Environment of the Teeth,ed. D. B. Ferguson, & Y. Kawamura,. Karger, Basel, Switzerland, pp. 154–61.

    Google Scholar 

  • Guggenheim, B. & Schroeder, H.E. (1967). Biochemical and morphological aspects of extracellular polysaccharides produced by cariogenic streptococci. Helvetica Odontologica Acta, 11, 131–52.

    Google Scholar 

  • Hadi, A.W. & Russel, C. (1969). Fusiforms in gingival material. Quantitative estimations from normal individuals and cases of periodontal disease. British Dental Journal, 126, 82–4.

    Google Scholar 

  • Hamada, S. & Slade, H.D. (1980). Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiology Reviews, 44, 331–84.

    Google Scholar 

  • Hamada, S., Ooshima, T., Torii, M., Imanishi, H., Masuda, N., Sobue, S. & Kotani, S. (1978). Dental caries induction in experimental animals by clinical strains of Streptococcus mutans isolated from Japanese children. Microbiology and Immunology, 22, 301–14.

    Google Scholar 

  • Hamada, S., Koga, T. & Ooshima, T. (1984). Virulence factors of Streptococcus mutans and dental caries prevention. Journal of Dental Research, 63, 407–11.

    Google Scholar 

  • Hamilton, I.R. & St. Martin, E.J. (1982). Evidence for the involvement of proton motive force in the transport of glucose by a mutant of Streptococcus mutans strain DR0001 defective in glucose-phosphoenolpyruvate phosphotransferase activity. Infection and Immunity, 36, 567–75.

    Google Scholar 

  • Handley, P.S. (1990). Structure, composition and functions of surface structures on oral bacteria. Biofouling, 2, 239–64.

    Google Scholar 

  • Handley, P.S., Carter, P.L. & Fielding, J. (1984). Streptococcus salivarius strains carry either fibrils and or fimbriae on the cell surface. Journal of Bacteriology, 157, 64–72.

    Google Scholar 

  • Handley, P.S., Carter, P.L., Wyatt, J.E. & Hesketh, L.M. (1985). Surface structures (peritrichous fibrils and tufts of fibrils) found on Streptococcus sanguis strains may be related to their ability to coaggregate with other oral genera. Infection and Immunity, 47, 217–27.

    Google Scholar 

  • Handley, P.S., Harty, D.W.S., Wyatt, J.E., Brown, C.R., Doran, J.P. & Gibbs, A.C.C. (1987). A comparison of the adhesion, co-aggregation and cell surface hydrophobicity properties of fibrillar and fimbriate strains of Streptococcus salivarius. Journal of General Microbiology, 133, 3207–17.

    Google Scholar 

  • Hardie, J.M., Thompson, P.L., South, R.J., Marsh, P.D., Bowden, G.H., McKhee, A.S., Fillery, E.D. & Slack, G.L. (1977). A longitudinal epidemiological study on dental plaque and the development of dental caries-interim results after two years. Journal of Dental Research, 56 (special issue C), C90–8.

    Google Scholar 

  • Hay, D.I. (1973). The interaction of human parotid salivary proteins with hydroxyapatite. Archives of Oral Biology, 18, 1517–29.

    Google Scholar 

  • Hay, D.I., Gibbons, R.J. & Spinell, D.M. (1971). Characteristics of some high molecular weight constituents with bacterial aggregating activity from whole saliva and dental plaque. Caries Research, 5, 111–23.

    Google Scholar 

  • Hogg, S.D. & Embery, G. (1979). The isolation and partial characterization of a sulphated glycoprotein from human whole saliva which aggregates strain of Streptococcus sanguis but not Streptococcus mutans. Archives of Oral Biology, 24, 791–7.

    Google Scholar 

  • Hogg, S.D., Handley, P.S. & Embery, G. (1981). Surface fibrils may be responsible for the salivary glycoprotein-mediated aggregation of the oral bacterium Streptococcus sanguis. Archives of Oral Biology, 26, 945–9.

    Google Scholar 

  • Houte, J. van & Green, D.B. (1974). Relationship between the concentration of bacteria in saliva and the colonization of teeth in humans. Infection and Immunity, 9, 624–30.

    Google Scholar 

  • Inoue, M., Shibata, H. & Morioka, T.J.M. (1982). Serotype specificity of some biochemical characteristics of Streptococcus mutans. Microbios, 33, 7–14.

    Google Scholar 

  • Jenkins, G.N. (1978). The Physiology and Biochemistry of the Mouth (4th edn). Blackwell, Oxford, UK.

    Google Scholar 

  • Jong, M.H. de, Hoeven, J.S. van der, Os, J.H. van, & Olijve, J.H. (1984). Growth of oral Streptococcus species and Actinomyces viscosus in human saliva. Applied and Environmental Microbiology, 47, 901–4.

    Google Scholar 

  • Kelstrup, J. & Gibbons, R.J. (1970). Induction of dental caries and alveolar bone loss by a human isolate resembling Streptococcus salivarius. Caries Research, 4, 360–77.

    Google Scholar 

  • Kilian, M., Mikkelsen, L. & Henrichsen, J. (1989). Taxonomic study of viridans streptococci: Description of Streptococcus gordonii sp. nov. and emended descriptions of Streptococcus sanguis (White and Niven, 1946), Streptococcus oralis (Bridge and Seneath, 1982), and Streptococcus mitis (Andrewes and Horder, 1906). International Journal of Systematic Bacteriology,39, 471–84.

    Google Scholar 

  • Lancy Jr, P., Dirienzo, J.M., Appelbaum, B., Rosan, B. & Holt, S.C. (1983). Corncob formation between Fusobacterium nucleatum and Streptococcus sanguis. Infection and Immunity, 40, 303–9.

    Google Scholar 

  • Lilienthal, B. (1955). An analysis of the buffer system in saliva. Journal of Dental Research, 34, 516–30.

    Google Scholar 

  • Lindquist, B. & Emilson, C.G. (1991). Dental location of Streptococcus mutans and Streptococcus sobrinus in humans harboring both species. Caries Research, 25, 146–52.

    Google Scholar 

  • Loesche, W.J. (1986). Role of Streptococcus mutans in human dental decay. Microbiological Reviews, 50, 355–80.

    Google Scholar 

  • Loesche, W.J. & Syed, S.A. (1973). The predominant cultivable flora of carious plaque and carious dentine. Caries Research, 7, 201–16.

    Google Scholar 

  • Lowes, J.A., Williams, G. & Tabaqchali, S. (1980). 10 years of infective endocarditis at St. Bartholomews hospital: analysis of clinical features and treatment in relation to prognosis and, mortality. Lancet,i, 133–6.

    Google Scholar 

  • Mandel, I.D. (1987). The functions of saliva. Journal of Dental Research, 66, 623–7.

    Google Scholar 

  • Marsh, P.D., Williamson, M.I., Keevil, C.W., McDermid, A.D. & Ellwood, D.C. (1982). Influence of sodium and potassium ions on acid production by washed cells of Streptococcus mutans Ingbritt and Streptococcus sanguis NCTC 7865 grown in a chemostat. Infection and Immunity, 36, 476–83.

    Google Scholar 

  • Marsh, P.D., Featherstone, A., McKee, A.S., Hallsworth, A.S., Robinson, C., Weatherell, J.A., Newman, H.N. & Pitter, A.F.V. (1989). A microbiological study of early caries of approximal surfaces in schoolchildren. Journal of Dental Research,68, 1151–4.

    Google Scholar 

  • Marshall, K.C., Stout, R. & Mitchell, R. (1971). Mechanism of the initial events in the sorption of marine bacteria to surfaces. Journal of General Microbiology, 68, 337–48.

    Google Scholar 

  • McIntire, F.C., Vatter, A.E., Baros, J. & Arnold, J. (1978). Mechanism of coaggregation between Actinomyces viscosus T14V and Streptococcus sanguis 34. Infection and Immunity, 21, 978–88.

    Google Scholar 

  • Mejare, B. & Edwardsson, S. (1975). Streptococcus milleri (Guthof); an indigenous organism of the human oral cavity. Archives of Oral Biology, 20, 757–62.

    Google Scholar 

  • Miller, W.D. (1890). Microorganisms of the Human Mouth. Karger, Basel, Switzer-land, (reprinted in 1973).

    Google Scholar 

  • Mouton, C., Reynolds, H.S., Gasiecki, E.A. & Genco, R.J. (1979). In vitro adhesion of tufted oral streptococci to Bacterionema matruchotii Current Microbiology, 3, 181–6.

    Google Scholar 

  • Mukasa, H. (1986). Properties of Streptococcus mutans glucosyltransferases. In Molecular Microbiology and Immunobiology of Streptococcus mutans, ed. S. Hamada, S.M. Michalek, H. Kiyono, L. Menaker & J.R. McGhee. Elsevier, Amsterdam, The Netherlands, pp. 121–32.

    Google Scholar 

  • Niven Jr, C.F., Smiley, K.L., Sherman, J.M. (1941). The production of large amounts of a polysaccharide by Streptococcus salivarius. Journal of Bacteriology, 41, 479–84.

    Google Scholar 

  • Orland, F.J., Blayney, J.R., Harrison, R.W., Reyniers, J.A., Trexler, P.C., Ervin, R.F., Gordon, H.A. & Wagner, M. (1955). Experimental caries in germ-free rats inoculated with enterococci. Journal of the American Dental Association,50, 259–72.

    Google Scholar 

  • Orstavik, D., Kraus, F.W. & Henshaw, L.C. (1974). In vitro attachment of streptococci to the tooth surface. Infection and Immunity, 9, 794–800.

    Google Scholar 

  • Parfitt, G.J. (1956). The speed of development of the carious cavity. British Dental Journal,100, 204–7.

    Google Scholar 

  • Perch, B., Kjems, E. & Ravn, T. (1974). Biochemical and serological properties of Streptococcus mutans from various human and animal sources. Acta Pathologica, Microbiologica et Clnmunologica Scandinavica,82, (section B) 357–70.

    Google Scholar 

  • Rolla, G., Ciardi, J.E., Eggen, K.H., Bowen, W.H. & Afseth, J. (1983a). Free glucosyl-and fructosyltransferase in human saliva and adsorption of these enzymes to teeth in vivo. In Glucosylstransferases Glucans Sucrose and Dental Caries (A Special Supplement to Chemical Senses), ed. R.J. Doyle & J.E. Ciardi. Information Retrieval Ltd, Washington DC, pp. 21–9.

    Google Scholar 

  • Rolla, G., Ciardi, J.E. & Schultz, S.A. (1983b). Adsorption of glucosyltransferase to saliva-coated hydroxyapatite. Possible mechanism for sucrose dependant bacterial colonization of teeth. Scandinavian Journal of Dental Research, 91, 112–17.

    Google Scholar 

  • Rosan, B. (1978). Absence of glycerol teichoic acid in certain oral streptococci. Science, 201, 918–20.

    Google Scholar 

  • Rugg-Gunn, A.J. (1989). Diet and dental caries. In The Prevention of Dental Disease (2nd edn.) ed. J-J. Murray. Oxford Medical Publications, Oxford, UK, pp. 4–114.

    Google Scholar 

  • Ruoff, K.L. (1988). Streptococcus anginosus (“Streptococcus milleri”): the unrecognised pathogen. Clinical Microbiological Reviews, 1, 102–8.

    Google Scholar 

  • Rutter, P.R. & Abbott, A. (1978). A study of the interaction between oral streptococci and hard surfaces. Journal of General Microbiology, 105, 219–26.

    Google Scholar 

  • Shaw, D.J. (1966). Introduction to Colloid and Surface Chemistry. Butterworths, London, UK, pp. 184–95.

    Google Scholar 

  • Simpson, W.A., Courtney, H. & Beachey, E.H. (1982). Fibronectin-a modulator of the oropharyngeal bacterial flora. In Microbiology-1982, ed. D. Schlessinger. American Society for Microbiology, Washington, DC, USA, pp. 346–7.ss

    Google Scholar 

  • Simpson, W.A., Hasty, D.L. & Beachey, E.H. (1985). Inhibition of the adhesion of Escherichia coli to oral epithelial cells by fibronectin. In Molecular Basis of Oral Microbial Adhesion, ed. S.E. Mergenhagen & B. Rosan. American Society for Microbiology, Washington, DC, USA, pp. 40–4.

    Google Scholar 

  • Slee, A.M. & Tanzer, J.M. (1980). Effect of growth conditions on sucrose phosphotransferase activity of Streptococcus mutans. Infection and Immunity, 27, 922–7.

    Google Scholar 

  • Soet, J.J., de, Dalen, P.J., van, Applemelk, B.J., & De, Graaff, J., (1987). Identification of Streptococcus sobrinus with monoclonal antibodies. Journal of Clinical Microbiology, 25, 2285–8.

    Google Scholar 

  • Soet, J.J., de, Toors, F.A. & De Graaff, J. (1989). Acidogenesis by oral streptococci at different pH values. Caries Research, 23, 14–17.

    Google Scholar 

  • Soet, J.J., de, Dalen, P.J., van Pavicic, M.J.A.M.P., & Graaff, J. de (1990). Enumeration of mutans streptococci in clinical samples using monoclonal antibodies. Journal of Clinical Microbiology, 28, 2467–72.

    Google Scholar 

  • Soet, J.J., de Loveren, C., van Lammens, A.J., Pavicic, M.J.A.M.P., Homburg, C.H.E., Ten Cate, J.M. & De Graaff, J. (1991). Differences in cariogenicity between fresh isolates of Streptococcus sobrinus and Streptococcus mutans. Caries Research, 25, 116–22.

    Google Scholar 

  • Sonju, T., Christensen, T.B., Kornstad, L. & Rolla, G. (1974). Electron microscopy, carbohydrate analysis and biological activities of the proteins absorbed in 2 h to tooth surfaces in vivo. Caries Research, 8, 113–22.

    Google Scholar 

  • Spinell, D.M. & Gibbons, R.J. (1974). Influence of culture medium on the glucosyl transferase-and dextran-binding capacity of Streptococcus mutans 6715 cells. Infection and Immunity, 10, 1448–51.

    Google Scholar 

  • Staat, R.H., Langley, S.D. & Doyle, R.J. (1980). Streptococcus mutans adherence: Presumptive evidence for protein-mediated attachment followed by glucandependant cellular accumulation. Infection and Immunity, 27, 675–81.

    Google Scholar 

  • Stephan, R.M. (1944). Intra-oral hydrogen-ion concentrations associated with dental caries activity. Journal of Dental Research, 23, 257–66.

    Google Scholar 

  • Theilade, E., Theilade, J. & Mikkelsen, L. (1982). Microbilogical studies on early dento-gingival plaque on teeth and mylar strips in humans. Journal of Periodontal Research, 17, 12–25.

    Google Scholar 

  • Wade, W.G., Aldred, M.J. & Walker, D.M. (1986). An improved medium for isolation of Streptococcus mutans. Journal of Medical Microbiology, 22, 319–23.

    Google Scholar 

  • Weerkamp, A.H. & McBride, B.C. (1981). Identification of a Streptococcus salivarius cell wall component mediating coaggregation with Veillonella alcalescens V1. Infection and Immunity, 32, 723–30.

    Google Scholar 

  • Weerkamp, A.H., Handley, P.S., Baars, A. & Slot, J.W. (1986). Negative staining and immunoelectron microscopy of adhesion-deficient mutants of Streptococcus salivarius reveal that the adhesive protein antigens are separate classes of cell surface fibril. Journal of Bacteriology, 165, 746–55.

    Google Scholar 

  • Williams, R.C. & Gibbons, R.J. (1975). Inhibition of streptococcal attachment to receptors on human buccal epithelial cells by antigenically similar salivary glycoproteins. Infection and Immunity, 11, 711–18.

    Google Scholar 

  • WHO (1986). Appropriate Use of Fluorides For Human Health. ed. J.J. Murray. World Health Organization, Geneva, Switzerland.

    Google Scholar 

  • Yakushiji, T., Inoue, M. & Koga, T. (1984). Inter-serotype comparison of polysaccharides produced by extracellular enzymes from Streptococcus mutans. Carbohydrate Research, 127, 253–66.

    Google Scholar 

  • Yamada, T. & Carlsson, J. (1976). The role of pyruvate formate-lyase in glucose metabolism of Streptococcus mutans. In Proceedings ‘Microbial Aspects of Dental Caries’ (A Special Supplement to Microbiology Abstracts Volume III) ed. H.M. Stiles, W.J. Loesche & T.C. O’Brian. Information Retrieval Ltd, London, UK, pp. 809–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Hogg, S.D. (1992). The Lactic Microflora of the Oral Cavity. In: Wood, B.J.B. (eds) The Lactic Acid Bacteria Volume 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3522-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3522-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-85166-720-8

  • Online ISBN: 978-1-4615-3522-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics